File size: 11,885 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Explanation class, with visualization functions.
"""
from io import open
import os
import os.path
import json
import string
import numpy as np

from .exceptions import LimeError

from sklearn.utils import check_random_state


def id_generator(size=15, random_state=None):
    """Helper function to generate random div ids. This is useful for embedding
    HTML into ipython notebooks."""
    chars = list(string.ascii_uppercase + string.digits)
    return ''.join(random_state.choice(chars, size, replace=True))


class DomainMapper(object):
    """Class for mapping features to the specific domain.

    The idea is that there would be a subclass for each domain (text, tables,
    images, etc), so that we can have a general Explanation class, and separate
    out the specifics of visualizing features in here.
    """

    def __init__(self):
        pass

    def map_exp_ids(self, exp, **kwargs):
        """Maps the feature ids to concrete names.

        Default behaviour is the identity function. Subclasses can implement
        this as they see fit.

        Args:
            exp: list of tuples [(id, weight), (id,weight)]
            kwargs: optional keyword arguments

        Returns:
            exp: list of tuples [(name, weight), (name, weight)...]
        """
        return exp

    def visualize_instance_html(self,
                                exp,
                                label,
                                div_name,
                                exp_object_name,
                                **kwargs):
        """Produces html for visualizing the instance.

        Default behaviour does nothing. Subclasses can implement this as they
        see fit.

        Args:
             exp: list of tuples [(id, weight), (id,weight)]
             label: label id (integer)
             div_name: name of div object to be used for rendering(in js)
             exp_object_name: name of js explanation object
             kwargs: optional keyword arguments

        Returns:
             js code for visualizing the instance
        """
        return ''


class Explanation(object):
    """Object returned by explainers."""

    def __init__(self,
                 domain_mapper,
                 mode='classification',
                 class_names=None,
                 random_state=None):
        """

        Initializer.

        Args:
            domain_mapper: must inherit from DomainMapper class
            type: "classification" or "regression"
            class_names: list of class names (only used for classification)
            random_state: an integer or numpy.RandomState that will be used to
                generate random numbers. If None, the random state will be
                initialized using the internal numpy seed.
        """
        self.random_state = random_state
        self.mode = mode
        self.domain_mapper = domain_mapper
        self.local_exp = {}
        self.intercept = {}
        self.score = None
        self.local_pred = None
        if mode == 'classification':
            self.class_names = class_names
            self.top_labels = None
            self.predict_proba = None
        elif mode == 'regression':
            self.class_names = ['negative', 'positive']
            self.predicted_value = None
            self.min_value = 0.0
            self.max_value = 1.0
            self.dummy_label = 1
        else:
            raise LimeError('Invalid explanation mode "{}". '
                            'Should be either "classification" '
                            'or "regression".'.format(mode))

    def available_labels(self):
        """
        Returns the list of classification labels for which we have any explanations.
        """
        try:
            assert self.mode == "classification"
        except AssertionError:
            raise NotImplementedError('Not supported for regression explanations.')
        else:
            ans = self.top_labels if self.top_labels else self.local_exp.keys()
            return list(ans)

    def as_list(self, label=1, **kwargs):
        """Returns the explanation as a list.

        Args:
            label: desired label. If you ask for a label for which an
                explanation wasn't computed, will throw an exception.
                Will be ignored for regression explanations.
            kwargs: keyword arguments, passed to domain_mapper

        Returns:
            list of tuples (representation, weight), where representation is
            given by domain_mapper. Weight is a float.
        """
        label_to_use = label if self.mode == "classification" else self.dummy_label
        ans = self.domain_mapper.map_exp_ids(self.local_exp[label_to_use], **kwargs)
        ans = [(x[0], float(x[1])) for x in ans]
        return ans

    def as_map(self):
        """Returns the map of explanations.

        Returns:
            Map from label to list of tuples (feature_id, weight).
        """
        return self.local_exp

    def as_pyplot_figure(self, label=1, **kwargs):
        """Returns the explanation as a pyplot figure.

        Will throw an error if you don't have matplotlib installed
        Args:
            label: desired label. If you ask for a label for which an
                   explanation wasn't computed, will throw an exception.
                   Will be ignored for regression explanations.
            kwargs: keyword arguments, passed to domain_mapper

        Returns:
            pyplot figure (barchart).
        """
        import matplotlib.pyplot as plt
        exp = self.as_list(label=label, **kwargs)
        fig = plt.figure()
        vals = [x[1] for x in exp]
        names = [x[0] for x in exp]
        vals.reverse()
        names.reverse()
        colors = ['green' if x > 0 else 'red' for x in vals]
        pos = np.arange(len(exp)) + .5
        plt.barh(pos, vals, align='center', color=colors)
        plt.yticks(pos, names)
        if self.mode == "classification":
            title = 'Local explanation for class %s' % self.class_names[label]
        else:
            title = 'Local explanation'
        plt.title(title)
        return fig

    def show_in_notebook(self,
                         labels=None,
                         predict_proba=True,
                         show_predicted_value=True,
                         **kwargs):
        """Shows html explanation in ipython notebook.

        See as_html() for parameters.
        This will throw an error if you don't have IPython installed"""

        from IPython.core.display import display, HTML
        display(HTML(self.as_html(labels=labels,
                                  predict_proba=predict_proba,
                                  show_predicted_value=show_predicted_value,
                                  **kwargs)))

    def save_to_file(self,
                     file_path,
                     labels=None,
                     predict_proba=True,
                     show_predicted_value=True,
                     **kwargs):
        """Saves html explanation to file. .

        Params:
            file_path: file to save explanations to

        See as_html() for additional parameters.

        """
        file_ = open(file_path, 'w', encoding='utf8')
        file_.write(self.as_html(labels=labels,
                                 predict_proba=predict_proba,
                                 show_predicted_value=show_predicted_value,
                                 **kwargs))
        file_.close()

    def as_html(self,
                labels=None,
                predict_proba=True,
                show_predicted_value=True,
                **kwargs):
        """Returns the explanation as an html page.

        Args:
            labels: desired labels to show explanations for (as barcharts).
                If you ask for a label for which an explanation wasn't
                computed, will throw an exception. If None, will show
                explanations for all available labels. (only used for classification)
            predict_proba: if true, add  barchart with prediction probabilities
                for the top classes. (only used for classification)
            show_predicted_value: if true, add  barchart with expected value
                (only used for regression)
            kwargs: keyword arguments, passed to domain_mapper

        Returns:
            code for an html page, including javascript includes.
        """

        def jsonize(x):
            return json.dumps(x, ensure_ascii=False)

        if labels is None and self.mode == "classification":
            labels = self.available_labels()

        this_dir, _ = os.path.split(__file__)
        bundle = open(os.path.join(this_dir, 'bundle.js'),
                      encoding="utf8").read()

        out = u'''<html>
        <meta http-equiv="content-type" content="text/html; charset=UTF8">
        <head><script>%s </script></head><body>''' % bundle
        random_id = id_generator(size=15, random_state=check_random_state(self.random_state))
        out += u'''
        <div class="lime top_div" id="top_div%s"></div>
        ''' % random_id

        predict_proba_js = ''
        if self.mode == "classification" and predict_proba:
            predict_proba_js = u'''
            var pp_div = top_div.append('div')
                                .classed('lime predict_proba', true);
            var pp_svg = pp_div.append('svg').style('width', '100%%');
            var pp = new lime.PredictProba(pp_svg, %s, %s);
            ''' % (jsonize([str(x) for x in self.class_names]),
                   jsonize(list(self.predict_proba.astype(float))))

        predict_value_js = ''
        if self.mode == "regression" and show_predicted_value:
            # reference self.predicted_value
            # (svg, predicted_value, min_value, max_value)
            predict_value_js = u'''
                    var pp_div = top_div.append('div')
                                        .classed('lime predicted_value', true);
                    var pp_svg = pp_div.append('svg').style('width', '100%%');
                    var pp = new lime.PredictedValue(pp_svg, %s, %s, %s);
                    ''' % (jsonize(float(self.predicted_value)),
                           jsonize(float(self.min_value)),
                           jsonize(float(self.max_value)))

        exp_js = '''var exp_div;
            var exp = new lime.Explanation(%s);
        ''' % (jsonize([str(x) for x in self.class_names]))

        if self.mode == "classification":
            for label in labels:
                exp = jsonize(self.as_list(label))
                exp_js += u'''
                exp_div = top_div.append('div').classed('lime explanation', true);
                exp.show(%s, %d, exp_div);
                ''' % (exp, label)
        else:
            exp = jsonize(self.as_list())
            exp_js += u'''
            exp_div = top_div.append('div').classed('lime explanation', true);
            exp.show(%s, %s, exp_div);
            ''' % (exp, self.dummy_label)

        raw_js = '''var raw_div = top_div.append('div');'''

        if self.mode == "classification":
            html_data = self.local_exp[labels[0]]
        else:
            html_data = self.local_exp[self.dummy_label]

        raw_js += self.domain_mapper.visualize_instance_html(
                html_data,
                labels[0] if self.mode == "classification" else self.dummy_label,
                'raw_div',
                'exp',
                **kwargs)
        out += u'''
        <script>
        var top_div = d3.select('#top_div%s').classed('lime top_div', true);
        %s
        %s
        %s
        %s
        </script>
        ''' % (random_id, predict_proba_js, predict_value_js, exp_js, raw_js)
        out += u'</body></html>'

        return out