File size: 20,229 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
"""
Functions for explaining text classifiers.
"""
from functools import partial
import itertools
import json
import re

import numpy as np
import scipy as sp
import sklearn
from sklearn.utils import check_random_state

from . import explanation
from . import lime_base


class TextDomainMapper(explanation.DomainMapper):
    """Maps feature ids to words or word-positions"""

    def __init__(self, indexed_string):
        """Initializer.

        Args:
            indexed_string: lime_text.IndexedString, original string
        """
        self.indexed_string = indexed_string

    def map_exp_ids(self, exp, positions=False):
        """Maps ids to words or word-position strings.

        Args:
            exp: list of tuples [(id, weight), (id,weight)]
            positions: if True, also return word positions

        Returns:
            list of tuples (word, weight), or (word_positions, weight) if
            examples: ('bad', 1) or ('bad_3-6-12', 1)
        """
        if positions:
            exp = [('%s_%s' % (
                self.indexed_string.word(x[0]),
                '-'.join(
                    map(str,
                        self.indexed_string.string_position(x[0])))), x[1])
                   for x in exp]
        else:
            exp = [(self.indexed_string.word(x[0]), x[1]) for x in exp]
        return exp

    def visualize_instance_html(self, exp, label, div_name, exp_object_name,
                                text=True, opacity=True):
        """Adds text with highlighted words to visualization.

        Args:
             exp: list of tuples [(id, weight), (id,weight)]
             label: label id (integer)
             div_name: name of div object to be used for rendering(in js)
             exp_object_name: name of js explanation object
             text: if False, return empty
             opacity: if True, fade colors according to weight
        """
        if not text:
            return u''
        text = (self.indexed_string.raw_string()
                .encode('utf-8', 'xmlcharrefreplace').decode('utf-8'))
        text = re.sub(r'[<>&]', '|', text)
        exp = [(self.indexed_string.word(x[0]),
                self.indexed_string.string_position(x[0]),
                x[1]) for x in exp]
        all_occurrences = list(itertools.chain.from_iterable(
            [itertools.product([x[0]], x[1], [x[2]]) for x in exp]))
        all_occurrences = [(x[0], int(x[1]), x[2]) for x in all_occurrences]
        ret = '''
            %s.show_raw_text(%s, %d, %s, %s, %s);
            ''' % (exp_object_name, json.dumps(all_occurrences), label,
                   json.dumps(text), div_name, json.dumps(opacity))
        return ret


class IndexedString(object):
    """String with various indexes."""

    def __init__(self, raw_string, split_expression=r'\W+', bow=True,
                 mask_string=None):
        """Initializer.

        Args:
            raw_string: string with raw text in it
            split_expression: Regex string or callable. If regex string, will be used with re.split.
                If callable, the function should return a list of tokens.
            bow: if True, a word is the same everywhere in the text - i.e. we
                 will index multiple occurrences of the same word. If False,
                 order matters, so that the same word will have different ids
                 according to position.
            mask_string: If not None, replace words with this if bow=False
                if None, default value is UNKWORDZ
        """
        self.raw = raw_string
        self.mask_string = 'UNKWORDZ' if mask_string is None else mask_string

        if callable(split_expression):
            tokens = split_expression(self.raw)
            self.as_list = self._segment_with_tokens(self.raw, tokens)
            tokens = set(tokens)

            def non_word(string):
                return string not in tokens

        else:
            # with the split_expression as a non-capturing group (?:), we don't need to filter out
            # the separator character from the split results.
            splitter = re.compile(r'(%s)|$' % split_expression)
            self.as_list = [s for s in splitter.split(self.raw) if s]
            non_word = splitter.match

        self.as_np = np.array(self.as_list)
        self.string_start = np.hstack(
            ([0], np.cumsum([len(x) for x in self.as_np[:-1]])))
        vocab = {}
        self.inverse_vocab = []
        self.positions = []
        self.bow = bow
        non_vocab = set()
        for i, word in enumerate(self.as_np):
            if word in non_vocab:
                continue
            if non_word(word):
                non_vocab.add(word)
                continue
            if bow:
                if word not in vocab:
                    vocab[word] = len(vocab)
                    self.inverse_vocab.append(word)
                    self.positions.append([])
                idx_word = vocab[word]
                self.positions[idx_word].append(i)
            else:
                self.inverse_vocab.append(word)
                self.positions.append(i)
        if not bow:
            self.positions = np.array(self.positions)

    def raw_string(self):
        """Returns the original raw string"""
        return self.raw

    def num_words(self):
        """Returns the number of tokens in the vocabulary for this document."""
        return len(self.inverse_vocab)

    def word(self, id_):
        """Returns the word that corresponds to id_ (int)"""
        return self.inverse_vocab[id_]

    def string_position(self, id_):
        """Returns a np array with indices to id_ (int) occurrences"""
        if self.bow:
            return self.string_start[self.positions[id_]]
        else:
            return self.string_start[[self.positions[id_]]]

    def inverse_removing(self, words_to_remove):
        """Returns a string after removing the appropriate words.

        If self.bow is false, replaces word with UNKWORDZ instead of removing
        it.

        Args:
            words_to_remove: list of ids (ints) to remove

        Returns:
            original raw string with appropriate words removed.
        """
        mask = np.ones(self.as_np.shape[0], dtype='bool')
        mask[self.__get_idxs(words_to_remove)] = False
        if not self.bow:
            return ''.join(
                [self.as_list[i] if mask[i] else self.mask_string
                 for i in range(mask.shape[0])])
        return ''.join([self.as_list[v] for v in mask.nonzero()[0]])

    @staticmethod
    def _segment_with_tokens(text, tokens):
        """Segment a string around the tokens created by a passed-in tokenizer"""
        list_form = []
        text_ptr = 0
        for token in tokens:
            inter_token_string = []
            while not text[text_ptr:].startswith(token):
                inter_token_string.append(text[text_ptr])
                text_ptr += 1
                if text_ptr >= len(text):
                    raise ValueError("Tokenization produced tokens that do not belong in string!")
            text_ptr += len(token)
            if inter_token_string:
                list_form.append(''.join(inter_token_string))
            list_form.append(token)
        if text_ptr < len(text):
            list_form.append(text[text_ptr:])
        return list_form

    def __get_idxs(self, words):
        """Returns indexes to appropriate words."""
        if self.bow:
            return list(itertools.chain.from_iterable(
                [self.positions[z] for z in words]))
        else:
            return self.positions[words]


class IndexedCharacters(object):
    """String with various indexes."""

    def __init__(self, raw_string, bow=True, mask_string=None):
        """Initializer.

        Args:
            raw_string: string with raw text in it
            bow: if True, a char is the same everywhere in the text - i.e. we
                 will index multiple occurrences of the same character. If False,
                 order matters, so that the same word will have different ids
                 according to position.
            mask_string: If not None, replace characters with this if bow=False
                if None, default value is chr(0)
        """
        self.raw = raw_string
        self.as_list = list(self.raw)
        self.as_np = np.array(self.as_list)
        self.mask_string = chr(0) if mask_string is None else mask_string
        self.string_start = np.arange(len(self.raw))
        vocab = {}
        self.inverse_vocab = []
        self.positions = []
        self.bow = bow
        non_vocab = set()
        for i, char in enumerate(self.as_np):
            if char in non_vocab:
                continue
            if bow:
                if char not in vocab:
                    vocab[char] = len(vocab)
                    self.inverse_vocab.append(char)
                    self.positions.append([])
                idx_char = vocab[char]
                self.positions[idx_char].append(i)
            else:
                self.inverse_vocab.append(char)
                self.positions.append(i)
        if not bow:
            self.positions = np.array(self.positions)

    def raw_string(self):
        """Returns the original raw string"""
        return self.raw

    def num_words(self):
        """Returns the number of tokens in the vocabulary for this document."""
        return len(self.inverse_vocab)

    def word(self, id_):
        """Returns the word that corresponds to id_ (int)"""
        return self.inverse_vocab[id_]

    def string_position(self, id_):
        """Returns a np array with indices to id_ (int) occurrences"""
        if self.bow:
            return self.string_start[self.positions[id_]]
        else:
            return self.string_start[[self.positions[id_]]]

    def inverse_removing(self, words_to_remove):
        """Returns a string after removing the appropriate words.

        If self.bow is false, replaces word with UNKWORDZ instead of removing
        it.

        Args:
            words_to_remove: list of ids (ints) to remove

        Returns:
            original raw string with appropriate words removed.
        """
        mask = np.ones(self.as_np.shape[0], dtype='bool')
        mask[self.__get_idxs(words_to_remove)] = False
        if not self.bow:
            return ''.join(
                [self.as_list[i] if mask[i] else self.mask_string
                 for i in range(mask.shape[0])])
        return ''.join([self.as_list[v] for v in mask.nonzero()[0]])

    def __get_idxs(self, words):
        """Returns indexes to appropriate words."""
        if self.bow:
            return list(itertools.chain.from_iterable(
                [self.positions[z] for z in words]))
        else:
            return self.positions[words]


class LimeTextExplainer(object):
    """Explains text classifiers.
       Currently, we are using an exponential kernel on cosine distance, and
       restricting explanations to words that are present in documents."""

    def __init__(self,
                 kernel_width=25,
                 kernel=None,
                 verbose=False,
                 class_names=None,
                 feature_selection='auto',
                 split_expression=r'\W+',
                 bow=True,
                 mask_string=None,
                 random_state=None,
                 char_level=False):
        """Init function.

        Args:
            kernel_width: kernel width for the exponential kernel.
            kernel: similarity kernel that takes euclidean distances and kernel
                width as input and outputs weights in (0,1). If None, defaults to
                an exponential kernel.
            verbose: if true, print local prediction values from linear model
            class_names: list of class names, ordered according to whatever the
                classifier is using. If not present, class names will be '0',
                '1', ...
            feature_selection: feature selection method. can be
                'forward_selection', 'lasso_path', 'none' or 'auto'.
                See function 'explain_instance_with_data' in lime_base.py for
                details on what each of the options does.
            split_expression: Regex string or callable. If regex string, will be used with re.split.
                If callable, the function should return a list of tokens.
            bow: if True (bag of words), will perturb input data by removing
                all occurrences of individual words or characters.
                Explanations will be in terms of these words. Otherwise, will
                explain in terms of word-positions, so that a word may be
                important the first time it appears and unimportant the second.
                Only set to false if the classifier uses word order in some way
                (bigrams, etc), or if you set char_level=True.
            mask_string: String used to mask tokens or characters if bow=False
                if None, will be 'UNKWORDZ' if char_level=False, chr(0)
                otherwise.
            random_state: an integer or numpy.RandomState that will be used to
                generate random numbers. If None, the random state will be
                initialized using the internal numpy seed.
            char_level: an boolean identifying that we treat each character
                as an independent occurence in the string
        """

        if kernel is None:
            def kernel(d, kernel_width):
                return np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))

        kernel_fn = partial(kernel, kernel_width=kernel_width)

        self.random_state = check_random_state(random_state)
        self.base = lime_base.LimeBase(kernel_fn, verbose,
                                       random_state=self.random_state)
        self.class_names = class_names
        self.vocabulary = None
        self.feature_selection = feature_selection
        self.bow = bow
        self.mask_string = mask_string
        self.split_expression = split_expression
        self.char_level = char_level

    def explain_instance(self,
                         text_instance,
                         classifier_fn,
                         labels=(1,),
                         top_labels=None,
                         num_features=10,
                         num_samples=5000,
                         distance_metric='cosine',
                         model_regressor=None):
        """Generates explanations for a prediction.

        First, we generate neighborhood data by randomly hiding features from
        the instance (see __data_labels_distance_mapping). We then learn
        locally weighted linear models on this neighborhood data to explain
        each of the classes in an interpretable way (see lime_base.py).

        Args:
            text_instance: raw text string to be explained.
            classifier_fn: classifier prediction probability function, which
                takes a list of d strings and outputs a (d, k) numpy array with
                prediction probabilities, where k is the number of classes.
                For ScikitClassifiers , this is classifier.predict_proba.
            labels: iterable with labels to be explained.
            top_labels: if not None, ignore labels and produce explanations for
                the K labels with highest prediction probabilities, where K is
                this parameter.
            num_features: maximum number of features present in explanation
            num_samples: size of the neighborhood to learn the linear model
            distance_metric: the distance metric to use for sample weighting,
                defaults to cosine similarity
            model_regressor: sklearn regressor to use in explanation. Defaults
            to Ridge regression in LimeBase. Must have model_regressor.coef_
            and 'sample_weight' as a parameter to model_regressor.fit()
        Returns:
            An Explanation object (see explanation.py) with the corresponding
            explanations.
        """

        indexed_string = (IndexedCharacters(
            text_instance, bow=self.bow, mask_string=self.mask_string)
                          if self.char_level else
                          IndexedString(text_instance, bow=self.bow,
                                        split_expression=self.split_expression,
                                        mask_string=self.mask_string))
        domain_mapper = TextDomainMapper(indexed_string)
        data, yss, distances = self.__data_labels_distances(
            indexed_string, classifier_fn, num_samples,
            distance_metric=distance_metric)
        if self.class_names is None:
            self.class_names = [str(x) for x in range(yss[0].shape[0])]
        ret_exp = explanation.Explanation(domain_mapper=domain_mapper,
                                          class_names=self.class_names,
                                          random_state=self.random_state)
        ret_exp.predict_proba = yss[0]
        if top_labels:
            labels = np.argsort(yss[0])[-top_labels:]
            ret_exp.top_labels = list(labels)
            ret_exp.top_labels.reverse()
        for label in labels:
            (ret_exp.intercept[label],
             ret_exp.local_exp[label],
             ret_exp.score, ret_exp.local_pred) = self.base.explain_instance_with_data(
                data, yss, distances, label, num_features,
                model_regressor=model_regressor,
                feature_selection=self.feature_selection)
        return ret_exp

    def __data_labels_distances(self,
                                indexed_string,
                                classifier_fn,
                                num_samples,
                                distance_metric='cosine'):
        """Generates a neighborhood around a prediction.

        Generates neighborhood data by randomly removing words from
        the instance, and predicting with the classifier. Uses cosine distance
        to compute distances between original and perturbed instances.
        Args:
            indexed_string: document (IndexedString) to be explained,
            classifier_fn: classifier prediction probability function, which
                takes a string and outputs prediction probabilities. For
                ScikitClassifier, this is classifier.predict_proba.
            num_samples: size of the neighborhood to learn the linear model
            distance_metric: the distance metric to use for sample weighting,
                defaults to cosine similarity.


        Returns:
            A tuple (data, labels, distances), where:
                data: dense num_samples * K binary matrix, where K is the
                    number of tokens in indexed_string. The first row is the
                    original instance, and thus a row of ones.
                labels: num_samples * L matrix, where L is the number of target
                    labels
                distances: cosine distance between the original instance and
                    each perturbed instance (computed in the binary 'data'
                    matrix), times 100.
        """

        def distance_fn(x):
            return sklearn.metrics.pairwise.pairwise_distances(
                x, x[0], metric=distance_metric).ravel() * 100

        doc_size = indexed_string.num_words()
        sample = self.random_state.randint(1, doc_size + 1, num_samples - 1)
        data = np.ones((num_samples, doc_size))
        data[0] = np.ones(doc_size)
        features_range = range(doc_size)
        inverse_data = [indexed_string.raw_string()]
        for i, size in enumerate(sample, start=1):
            inactive = self.random_state.choice(features_range, size,
                                                replace=False)
            data[i, inactive] = 0
            inverse_data.append(indexed_string.inverse_removing(inactive))
        labels = classifier_fn(inverse_data)
        distances = distance_fn(sp.sparse.csr_matrix(data))
        return data, labels, distances