Spaces:
Build error
Build error
File size: 20,229 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
"""
Functions for explaining text classifiers.
"""
from functools import partial
import itertools
import json
import re
import numpy as np
import scipy as sp
import sklearn
from sklearn.utils import check_random_state
from . import explanation
from . import lime_base
class TextDomainMapper(explanation.DomainMapper):
"""Maps feature ids to words or word-positions"""
def __init__(self, indexed_string):
"""Initializer.
Args:
indexed_string: lime_text.IndexedString, original string
"""
self.indexed_string = indexed_string
def map_exp_ids(self, exp, positions=False):
"""Maps ids to words or word-position strings.
Args:
exp: list of tuples [(id, weight), (id,weight)]
positions: if True, also return word positions
Returns:
list of tuples (word, weight), or (word_positions, weight) if
examples: ('bad', 1) or ('bad_3-6-12', 1)
"""
if positions:
exp = [('%s_%s' % (
self.indexed_string.word(x[0]),
'-'.join(
map(str,
self.indexed_string.string_position(x[0])))), x[1])
for x in exp]
else:
exp = [(self.indexed_string.word(x[0]), x[1]) for x in exp]
return exp
def visualize_instance_html(self, exp, label, div_name, exp_object_name,
text=True, opacity=True):
"""Adds text with highlighted words to visualization.
Args:
exp: list of tuples [(id, weight), (id,weight)]
label: label id (integer)
div_name: name of div object to be used for rendering(in js)
exp_object_name: name of js explanation object
text: if False, return empty
opacity: if True, fade colors according to weight
"""
if not text:
return u''
text = (self.indexed_string.raw_string()
.encode('utf-8', 'xmlcharrefreplace').decode('utf-8'))
text = re.sub(r'[<>&]', '|', text)
exp = [(self.indexed_string.word(x[0]),
self.indexed_string.string_position(x[0]),
x[1]) for x in exp]
all_occurrences = list(itertools.chain.from_iterable(
[itertools.product([x[0]], x[1], [x[2]]) for x in exp]))
all_occurrences = [(x[0], int(x[1]), x[2]) for x in all_occurrences]
ret = '''
%s.show_raw_text(%s, %d, %s, %s, %s);
''' % (exp_object_name, json.dumps(all_occurrences), label,
json.dumps(text), div_name, json.dumps(opacity))
return ret
class IndexedString(object):
"""String with various indexes."""
def __init__(self, raw_string, split_expression=r'\W+', bow=True,
mask_string=None):
"""Initializer.
Args:
raw_string: string with raw text in it
split_expression: Regex string or callable. If regex string, will be used with re.split.
If callable, the function should return a list of tokens.
bow: if True, a word is the same everywhere in the text - i.e. we
will index multiple occurrences of the same word. If False,
order matters, so that the same word will have different ids
according to position.
mask_string: If not None, replace words with this if bow=False
if None, default value is UNKWORDZ
"""
self.raw = raw_string
self.mask_string = 'UNKWORDZ' if mask_string is None else mask_string
if callable(split_expression):
tokens = split_expression(self.raw)
self.as_list = self._segment_with_tokens(self.raw, tokens)
tokens = set(tokens)
def non_word(string):
return string not in tokens
else:
# with the split_expression as a non-capturing group (?:), we don't need to filter out
# the separator character from the split results.
splitter = re.compile(r'(%s)|$' % split_expression)
self.as_list = [s for s in splitter.split(self.raw) if s]
non_word = splitter.match
self.as_np = np.array(self.as_list)
self.string_start = np.hstack(
([0], np.cumsum([len(x) for x in self.as_np[:-1]])))
vocab = {}
self.inverse_vocab = []
self.positions = []
self.bow = bow
non_vocab = set()
for i, word in enumerate(self.as_np):
if word in non_vocab:
continue
if non_word(word):
non_vocab.add(word)
continue
if bow:
if word not in vocab:
vocab[word] = len(vocab)
self.inverse_vocab.append(word)
self.positions.append([])
idx_word = vocab[word]
self.positions[idx_word].append(i)
else:
self.inverse_vocab.append(word)
self.positions.append(i)
if not bow:
self.positions = np.array(self.positions)
def raw_string(self):
"""Returns the original raw string"""
return self.raw
def num_words(self):
"""Returns the number of tokens in the vocabulary for this document."""
return len(self.inverse_vocab)
def word(self, id_):
"""Returns the word that corresponds to id_ (int)"""
return self.inverse_vocab[id_]
def string_position(self, id_):
"""Returns a np array with indices to id_ (int) occurrences"""
if self.bow:
return self.string_start[self.positions[id_]]
else:
return self.string_start[[self.positions[id_]]]
def inverse_removing(self, words_to_remove):
"""Returns a string after removing the appropriate words.
If self.bow is false, replaces word with UNKWORDZ instead of removing
it.
Args:
words_to_remove: list of ids (ints) to remove
Returns:
original raw string with appropriate words removed.
"""
mask = np.ones(self.as_np.shape[0], dtype='bool')
mask[self.__get_idxs(words_to_remove)] = False
if not self.bow:
return ''.join(
[self.as_list[i] if mask[i] else self.mask_string
for i in range(mask.shape[0])])
return ''.join([self.as_list[v] for v in mask.nonzero()[0]])
@staticmethod
def _segment_with_tokens(text, tokens):
"""Segment a string around the tokens created by a passed-in tokenizer"""
list_form = []
text_ptr = 0
for token in tokens:
inter_token_string = []
while not text[text_ptr:].startswith(token):
inter_token_string.append(text[text_ptr])
text_ptr += 1
if text_ptr >= len(text):
raise ValueError("Tokenization produced tokens that do not belong in string!")
text_ptr += len(token)
if inter_token_string:
list_form.append(''.join(inter_token_string))
list_form.append(token)
if text_ptr < len(text):
list_form.append(text[text_ptr:])
return list_form
def __get_idxs(self, words):
"""Returns indexes to appropriate words."""
if self.bow:
return list(itertools.chain.from_iterable(
[self.positions[z] for z in words]))
else:
return self.positions[words]
class IndexedCharacters(object):
"""String with various indexes."""
def __init__(self, raw_string, bow=True, mask_string=None):
"""Initializer.
Args:
raw_string: string with raw text in it
bow: if True, a char is the same everywhere in the text - i.e. we
will index multiple occurrences of the same character. If False,
order matters, so that the same word will have different ids
according to position.
mask_string: If not None, replace characters with this if bow=False
if None, default value is chr(0)
"""
self.raw = raw_string
self.as_list = list(self.raw)
self.as_np = np.array(self.as_list)
self.mask_string = chr(0) if mask_string is None else mask_string
self.string_start = np.arange(len(self.raw))
vocab = {}
self.inverse_vocab = []
self.positions = []
self.bow = bow
non_vocab = set()
for i, char in enumerate(self.as_np):
if char in non_vocab:
continue
if bow:
if char not in vocab:
vocab[char] = len(vocab)
self.inverse_vocab.append(char)
self.positions.append([])
idx_char = vocab[char]
self.positions[idx_char].append(i)
else:
self.inverse_vocab.append(char)
self.positions.append(i)
if not bow:
self.positions = np.array(self.positions)
def raw_string(self):
"""Returns the original raw string"""
return self.raw
def num_words(self):
"""Returns the number of tokens in the vocabulary for this document."""
return len(self.inverse_vocab)
def word(self, id_):
"""Returns the word that corresponds to id_ (int)"""
return self.inverse_vocab[id_]
def string_position(self, id_):
"""Returns a np array with indices to id_ (int) occurrences"""
if self.bow:
return self.string_start[self.positions[id_]]
else:
return self.string_start[[self.positions[id_]]]
def inverse_removing(self, words_to_remove):
"""Returns a string after removing the appropriate words.
If self.bow is false, replaces word with UNKWORDZ instead of removing
it.
Args:
words_to_remove: list of ids (ints) to remove
Returns:
original raw string with appropriate words removed.
"""
mask = np.ones(self.as_np.shape[0], dtype='bool')
mask[self.__get_idxs(words_to_remove)] = False
if not self.bow:
return ''.join(
[self.as_list[i] if mask[i] else self.mask_string
for i in range(mask.shape[0])])
return ''.join([self.as_list[v] for v in mask.nonzero()[0]])
def __get_idxs(self, words):
"""Returns indexes to appropriate words."""
if self.bow:
return list(itertools.chain.from_iterable(
[self.positions[z] for z in words]))
else:
return self.positions[words]
class LimeTextExplainer(object):
"""Explains text classifiers.
Currently, we are using an exponential kernel on cosine distance, and
restricting explanations to words that are present in documents."""
def __init__(self,
kernel_width=25,
kernel=None,
verbose=False,
class_names=None,
feature_selection='auto',
split_expression=r'\W+',
bow=True,
mask_string=None,
random_state=None,
char_level=False):
"""Init function.
Args:
kernel_width: kernel width for the exponential kernel.
kernel: similarity kernel that takes euclidean distances and kernel
width as input and outputs weights in (0,1). If None, defaults to
an exponential kernel.
verbose: if true, print local prediction values from linear model
class_names: list of class names, ordered according to whatever the
classifier is using. If not present, class names will be '0',
'1', ...
feature_selection: feature selection method. can be
'forward_selection', 'lasso_path', 'none' or 'auto'.
See function 'explain_instance_with_data' in lime_base.py for
details on what each of the options does.
split_expression: Regex string or callable. If regex string, will be used with re.split.
If callable, the function should return a list of tokens.
bow: if True (bag of words), will perturb input data by removing
all occurrences of individual words or characters.
Explanations will be in terms of these words. Otherwise, will
explain in terms of word-positions, so that a word may be
important the first time it appears and unimportant the second.
Only set to false if the classifier uses word order in some way
(bigrams, etc), or if you set char_level=True.
mask_string: String used to mask tokens or characters if bow=False
if None, will be 'UNKWORDZ' if char_level=False, chr(0)
otherwise.
random_state: an integer or numpy.RandomState that will be used to
generate random numbers. If None, the random state will be
initialized using the internal numpy seed.
char_level: an boolean identifying that we treat each character
as an independent occurence in the string
"""
if kernel is None:
def kernel(d, kernel_width):
return np.sqrt(np.exp(-(d ** 2) / kernel_width ** 2))
kernel_fn = partial(kernel, kernel_width=kernel_width)
self.random_state = check_random_state(random_state)
self.base = lime_base.LimeBase(kernel_fn, verbose,
random_state=self.random_state)
self.class_names = class_names
self.vocabulary = None
self.feature_selection = feature_selection
self.bow = bow
self.mask_string = mask_string
self.split_expression = split_expression
self.char_level = char_level
def explain_instance(self,
text_instance,
classifier_fn,
labels=(1,),
top_labels=None,
num_features=10,
num_samples=5000,
distance_metric='cosine',
model_regressor=None):
"""Generates explanations for a prediction.
First, we generate neighborhood data by randomly hiding features from
the instance (see __data_labels_distance_mapping). We then learn
locally weighted linear models on this neighborhood data to explain
each of the classes in an interpretable way (see lime_base.py).
Args:
text_instance: raw text string to be explained.
classifier_fn: classifier prediction probability function, which
takes a list of d strings and outputs a (d, k) numpy array with
prediction probabilities, where k is the number of classes.
For ScikitClassifiers , this is classifier.predict_proba.
labels: iterable with labels to be explained.
top_labels: if not None, ignore labels and produce explanations for
the K labels with highest prediction probabilities, where K is
this parameter.
num_features: maximum number of features present in explanation
num_samples: size of the neighborhood to learn the linear model
distance_metric: the distance metric to use for sample weighting,
defaults to cosine similarity
model_regressor: sklearn regressor to use in explanation. Defaults
to Ridge regression in LimeBase. Must have model_regressor.coef_
and 'sample_weight' as a parameter to model_regressor.fit()
Returns:
An Explanation object (see explanation.py) with the corresponding
explanations.
"""
indexed_string = (IndexedCharacters(
text_instance, bow=self.bow, mask_string=self.mask_string)
if self.char_level else
IndexedString(text_instance, bow=self.bow,
split_expression=self.split_expression,
mask_string=self.mask_string))
domain_mapper = TextDomainMapper(indexed_string)
data, yss, distances = self.__data_labels_distances(
indexed_string, classifier_fn, num_samples,
distance_metric=distance_metric)
if self.class_names is None:
self.class_names = [str(x) for x in range(yss[0].shape[0])]
ret_exp = explanation.Explanation(domain_mapper=domain_mapper,
class_names=self.class_names,
random_state=self.random_state)
ret_exp.predict_proba = yss[0]
if top_labels:
labels = np.argsort(yss[0])[-top_labels:]
ret_exp.top_labels = list(labels)
ret_exp.top_labels.reverse()
for label in labels:
(ret_exp.intercept[label],
ret_exp.local_exp[label],
ret_exp.score, ret_exp.local_pred) = self.base.explain_instance_with_data(
data, yss, distances, label, num_features,
model_regressor=model_regressor,
feature_selection=self.feature_selection)
return ret_exp
def __data_labels_distances(self,
indexed_string,
classifier_fn,
num_samples,
distance_metric='cosine'):
"""Generates a neighborhood around a prediction.
Generates neighborhood data by randomly removing words from
the instance, and predicting with the classifier. Uses cosine distance
to compute distances between original and perturbed instances.
Args:
indexed_string: document (IndexedString) to be explained,
classifier_fn: classifier prediction probability function, which
takes a string and outputs prediction probabilities. For
ScikitClassifier, this is classifier.predict_proba.
num_samples: size of the neighborhood to learn the linear model
distance_metric: the distance metric to use for sample weighting,
defaults to cosine similarity.
Returns:
A tuple (data, labels, distances), where:
data: dense num_samples * K binary matrix, where K is the
number of tokens in indexed_string. The first row is the
original instance, and thus a row of ones.
labels: num_samples * L matrix, where L is the number of target
labels
distances: cosine distance between the original instance and
each perturbed instance (computed in the binary 'data'
matrix), times 100.
"""
def distance_fn(x):
return sklearn.metrics.pairwise.pairwise_distances(
x, x[0], metric=distance_metric).ravel() * 100
doc_size = indexed_string.num_words()
sample = self.random_state.randint(1, doc_size + 1, num_samples - 1)
data = np.ones((num_samples, doc_size))
data[0] = np.ones(doc_size)
features_range = range(doc_size)
inverse_data = [indexed_string.raw_string()]
for i, size in enumerate(sample, start=1):
inactive = self.random_state.choice(features_range, size,
replace=False)
data[i, inactive] = 0
inverse_data.append(indexed_string.inverse_removing(inactive))
labels = classifier_fn(inverse_data)
distances = distance_fn(sp.sparse.csr_matrix(data))
return data, labels, distances
|