File size: 5,630 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
import torch.nn as nn
from torch.nn import functional as F
import numpy as np
from fastai.vision import *

from modules_matrn.attention import *
from modules_matrn.model import Model, _default_tfmer_cfg
from modules_matrn.transformer import (PositionalEncoding,
                                 TransformerEncoder,
                                 TransformerEncoderLayer)


class BaseSemanticVisual_backbone_feature(Model):
    def __init__(self, config):
        super().__init__(config)
        d_model = ifnone(config.model_alignment_d_model, _default_tfmer_cfg['d_model'])
        nhead = ifnone(config.model_alignment_nhead, _default_tfmer_cfg['nhead'])
        d_inner = ifnone(config.model_alignment_d_inner, _default_tfmer_cfg['d_inner'])
        dropout = ifnone(config.model_alignmentl_dropout, _default_tfmer_cfg['dropout'])
        activation = ifnone(config.model_alignment_activation, _default_tfmer_cfg['activation'])
        num_layers = ifnone(config.model_alignment_num_layers, 2)

        self.mask_example_prob = ifnone(config.model_alignment_mask_example_prob, 0.9)
        self.mask_candidate_prob = ifnone(config.model_alignment_mask_candidate_prob, 0.9)
        self.num_vis_mask = ifnone(config.model_alignment_num_vis_mask, 10)
        self.nhead = nhead

        self.d_model = d_model
        self.use_self_attn = ifnone(config.model_alignment_use_self_attn, False)
        self.loss_weight = ifnone(config.model_alignment_loss_weight, 1.0)
        self.max_length = config.dataset_max_length + 1  # additional stop token
        self.debug = ifnone(config.global_debug, False)

        encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nhead,
                                                dim_feedforward=d_inner, dropout=dropout, activation=activation)
        self.model1 = TransformerEncoder(encoder_layer, num_layers)
        self.pos_encoder_tfm = PositionalEncoding(d_model, dropout=0, max_len=8*32)

        mode = ifnone(config.model_alignment_attention_mode, 'nearest')
        self.model2_vis = PositionAttention(
            max_length=config.dataset_max_length + 1,  # additional stop token
            mode=mode
        )
        self.cls_vis = nn.Linear(d_model, self.charset.num_classes)
        self.cls_sem = nn.Linear(d_model, self.charset.num_classes)
        self.w_att = nn.Linear(2 * d_model, d_model)

        v_token = torch.empty((1, d_model))
        self.v_token = nn.Parameter(v_token)
        torch.nn.init.uniform_(self.v_token, -0.001, 0.001)

        self.cls = nn.Linear(d_model, self.charset.num_classes)

    def forward(self, l_feature, v_feature, lengths_l=None, v_attn=None, l_logits=None, texts=None, training=True):
        """
        Args:
            l_feature: (N, T, E) where T is length, N is batch size and d is dim of model
            v_feature: (N, E, H, W)
            lengths_l: (N,)
            v_attn: (N, T, H, W)
            l_logits: (N, T, C)
            texts: (N, T, C)
        """
        padding_mask = self._get_padding_mask(lengths_l, self.max_length)

        l_feature = l_feature.permute(1, 0, 2)  # (T, N, E)
        N, E, H, W = v_feature.size()
        v_feature = v_feature.view(N, E, H*W).contiguous().permute(2, 0, 1)  # (H*W, N, E)

        if training:
            n, t, h, w = v_attn.shape
            v_attn = v_attn.view(n, t, -1) # (N, T, H*W)
            for idx, length in enumerate(lengths_l):
                if np.random.random() <= self.mask_example_prob:
                    l_idx = np.random.randint(int(length))
                    v_random_idx = v_attn[idx, l_idx].argsort(descending=True).cpu().numpy()[:self.num_vis_mask,]
                    v_random_idx = v_random_idx[np.random.random(v_random_idx.shape) <= self.mask_candidate_prob]
                    v_feature[v_random_idx, idx] = self.v_token

        if len(v_attn.shape) == 4:
            n, t, h, w = v_attn.shape
            v_attn = v_attn.view(n, t, -1) # (N, T, H*W)

        zeros = v_feature.new_zeros((h*w, n, E))  # (H*W, N, E)
        base_pos = self.pos_encoder_tfm(zeros)  # (H*W, N, E)
        base_pos = base_pos.permute(1, 0, 2) # (N, H*W, E)

        base_pos = torch.bmm(v_attn, base_pos) # (N, T, E)
        base_pos = base_pos.permute(1, 0, 2) # (T, N, E)

        l_feature = l_feature + base_pos

        sv_feature = torch.cat((v_feature, l_feature), dim=0)  # (H*W+T, N, E)
        sv_feature = self.model1(sv_feature)  # (H*W+T, N, E)

        sv_to_v_feature = sv_feature[:H*W]  # (H*W, N, E)
        sv_to_s_feature = sv_feature[H*W:]  # (T, N, E)

        sv_to_v_feature = sv_to_v_feature.permute(1, 2, 0).view(N, E, H, W)
        sv_to_v_feature, _ = self.model2_vis(sv_to_v_feature)  # (N, T, E)
        sv_to_v_logits = self.cls_vis(sv_to_v_feature)  # (N, T, C)
        pt_v_lengths = self._get_length(sv_to_v_logits)  # (N,)

        sv_to_s_feature = sv_to_s_feature.permute(1, 0, 2)  # (N, T, E)
        sv_to_s_logits = self.cls_sem(sv_to_s_feature)  # (N, T, C)
        pt_s_lengths = self._get_length(sv_to_s_logits)  # (N,)

        f = torch.cat((sv_to_v_feature, sv_to_s_feature), dim=2)
        f_att = torch.sigmoid(self.w_att(f))
        output = f_att * sv_to_v_feature + (1 - f_att) * sv_to_s_feature

        logits = self.cls(output)  # (N, T, C)
        pt_lengths = self._get_length(logits)

        return {'logits': logits, 'pt_lengths': pt_lengths, 'loss_weight':self.loss_weight*3,
                'v_logits': sv_to_v_logits, 'pt_v_lengths': pt_v_lengths,
                's_logits': sv_to_s_logits, 'pt_s_lengths': pt_s_lengths,
                'name': 'alignment'}