File size: 18,035 Bytes
d61b9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
# coding:utf-8
# chenjun
# date:2020-04-18
import torch.nn as nn 
import torch
import torch.nn.functional as F 
import numpy as np


# def get_non_pad_mask(seq, PAD):
#     assert seq.dim() == 2
#     return seq.ne(PAD).type(torch.float).unsqueeze(-1)

def get_pad_mask(seq, pad_idx):
    return (seq == pad_idx).unsqueeze(-2)


def get_subsequent_mask(seq):
    ''' For masking out the subsequent info. '''

    sz_b, len_s = seq.size()
    subsequent_mask = torch.triu(
        torch.ones((len_s, len_s), device=seq.device, dtype=torch.uint8), diagonal=1)       # 返回上三角矩阵
    subsequent_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1)  # b x ls x ls

    return subsequent_mask


def get_attn_key_pad_mask(seq_k, seq_q, PAD):
    ''' For masking out the padding part of key sequence. 
        seq_k:src_seq
        seq_q:tgt_seq
    '''

    # Expand to fit the shape of key query attention matrix.
    len_q = seq_q.size(1)                       # 目标序列
    padding_mask = seq_k.eq(PAD)      # 源序列
    padding_mask = padding_mask.unsqueeze(1).expand(-1, len_q, -1)  # b x lq x lk

    return padding_mask


class PositionalEncoding(nn.Module):

    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()

        # Not a parameter
        self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        ''' Sinusoid position encoding table '''
        # TODO: make it with torch instead of numpy

        def get_position_angle_vec(position):
            return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        return torch.FloatTensor(sinusoid_table).unsqueeze(0)

    def forward(self, x):
        return x + self.pos_table[:, :x.size(1)].clone().detach()


class ScaledDotProductAttention(nn.Module):
    ''' Scaled Dot-Product Attention '''

    def __init__(self, temperature, attn_dropout=0.1):
        super(ScaledDotProductAttention, self).__init__()
        self.temperature = temperature
        self.dropout = nn.Dropout(attn_dropout)
        self.softmax = nn.Softmax(dim=2)

    def forward(self, q, k, v, mask=None):

        attn = torch.bmm(q, k.transpose(1, 2))
        attn = attn / self.temperature

        if mask is not None:
            # print(mask.shape, attn.shape, v.shape)
            attn = attn.masked_fill(mask, -1e9)

        attn = self.softmax(attn)       # 第3个维度为权重
        attn = self.dropout(attn)
        output = torch.bmm(attn, v)

        return output, attn


class MultiHeadAttention(nn.Module):
    ''' Multi-Head Attention module '''

    def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
        super(MultiHeadAttention, self).__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.w_qs = nn.Linear(d_model, n_head * d_k)
        self.w_ks = nn.Linear(d_model, n_head * d_k)
        self.w_vs = nn.Linear(d_model, n_head * d_v)
        nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
        nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))

        self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
        self.layer_norm = nn.LayerNorm(d_model)

        self.fc = nn.Linear(n_head * d_v, d_model)
        nn.init.xavier_normal_(self.fc.weight)

        self.dropout = nn.Dropout(dropout)


    def forward(self, q, k, v, mask=None):

        d_k, d_v, n_head = self.d_k, self.d_v, self.n_head

        sz_b, len_q, _ = q.size()
        sz_b, len_k, _ = k.size()
        sz_b, len_v, _ = v.size()

        residual = q

        q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)     # 4*21*512 ---- 4*21*8*64
        k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
        v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)

        q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
        k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
        v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv

        mask = mask.repeat(n_head, 1, 1) if mask is not None else None # (n*b) x .. x ..
        output, attn = self.attention(q, k, v, mask=mask)

        output = output.view(n_head, sz_b, len_q, d_v)
        output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv)

        output = self.dropout(self.fc(output))
        output = self.layer_norm(output + residual)

        return output, attn

class PositionwiseFeedForward(nn.Module):
    ''' A two-feed-forward-layer module '''

    def __init__(self, d_in, d_hid, dropout=0.1):
        super(PositionwiseFeedForward, self).__init__()
        self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise
        self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise
        self.layer_norm = nn.LayerNorm(d_in)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        residual = x
        output = x.transpose(1, 2)
        output = self.w_2(F.relu(self.w_1(output)))
        output = output.transpose(1, 2)
        output = self.dropout(output)
        output = self.layer_norm(output + residual)
        return output


class EncoderLayer(nn.Module):
    ''' Compose with two layers '''

    def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
        super(EncoderLayer, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)

    def forward(self, enc_input, slf_attn_mask=None):
        enc_output, enc_slf_attn = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask)
        enc_output = self.pos_ffn(enc_output)
        return enc_output, enc_slf_attn


class Torch_transformer_encoder(nn.Module):
    '''
        use pytorch transformer for sequence learning

    '''
    def __init__(self, d_word_vec=512, n_layers=2, n_head=8, d_model=512, dim_feedforward=1024, n_position=256):
        super(Torch_transformer_encoder, self).__init__()

        self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
        encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_head, dim_feedforward=dim_feedforward)
        self.layer_norm = nn.LayerNorm(d_model)
        self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=n_layers, norm=self.layer_norm)
        self.dropout = nn.Dropout(p=0.1)

    def forward(self, cnn_feature, src_mask=None, return_attns=False):
        enc_slf_attn_list = []

        # -- Forward
        enc_output = self.dropout(self.position_enc(cnn_feature))  # position embeding

        enc_output = self.encoder(enc_output)

        enc_output = self.layer_norm(enc_output)

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output,



class Transforme_Encoder(nn.Module):
    ''' to capture the global spatial dependencies'''
    '''
    d_word_vec: 位置编码,特征空间维度
    n_layers: transformer的层数
    n_head:多头数量
    d_k: 64
    d_v: 64
    d_model: 512,
    d_inner: 1024
    n_position: 位置编码的最大值
    '''
    def __init__(
            self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64,
            d_model=512, d_inner=1024, dropout=0.1, n_position=256):

        super().__init__()

        self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
        self.dropout = nn.Dropout(p=dropout)
        self.layer_stack = nn.ModuleList([
            EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
            for _ in range(n_layers)])
        self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)

    def forward(self, cnn_feature, src_mask, return_attns=False):

        enc_slf_attn_list = []

        # -- Forward
        enc_output = self.dropout(self.position_enc(cnn_feature))   # position embeding

        for enc_layer in self.layer_stack:
            enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
            enc_slf_attn_list += [enc_slf_attn] if return_attns else []

        enc_output = self.layer_norm(enc_output)

        if return_attns:
            return enc_output, enc_slf_attn_list
        return enc_output,
    

class PVAM(nn.Module):
    ''' Parallel Visual attention module 平行解码'''
    '''
    n_dim:512,阅读顺序序列编码的空间维度
    N_max_character: 25,单张图片最多有多少个字符
    n_position: cnn出来之后特征的序列长度
    '''
    def __init__(self,  n_dim=512, N_max_character=25, n_position=256):

        super(PVAM, self).__init__()
        self.character_len = N_max_character

        self.f0_embedding = nn.Embedding(N_max_character, n_dim)
        
        self.w0 = nn.Linear(N_max_character, n_position)
        self.wv = nn.Linear(n_dim, n_dim)
        # first linear(512,25)
        self.we = nn.Linear(n_dim, N_max_character)

        self.active = nn.Tanh()
        self.softmax = nn.Softmax(dim=2)

    def forward(self, enc_output):
        reading_order = torch.arange(self.character_len, dtype=torch.long, device=enc_output.device)
        reading_order = reading_order.unsqueeze(0).expand(enc_output.size(0), -1)    # (S,) -> (B, S)
        reading_order_embed = self.f0_embedding(reading_order)      # b,25,512

        t = self.w0(reading_order_embed.permute(0,2,1))     # b,512,256
        t = self.active(t.permute(0,2,1) + self.wv(enc_output))     # b,256,512
        # first linear(512,25)
        attn = self.we(t)  # b,256,25

        attn = self.softmax(attn.permute(0,2,1))  # b,25,256

        g_output = torch.bmm(attn, enc_output)  # b,25,512
        return g_output


class GSRM(nn.Module):
    # global semantic reasoning module
    '''
    n_dim:embed编码的特征空间维度
    n_class:embedding需要用到
    PAD:计算mask用到
    '''
    def __init__(self, n_dim=512, n_class=37, PAD=37-1, n_layers=4, n_position=25):

        super(GSRM, self).__init__()

        self.PAD = PAD
        self.argmax_embed = nn.Embedding(n_class, n_dim)

        self.transformer_units = Transforme_Encoder(n_layers=n_layers, n_position=n_position)      # for global context information
        # self.transformer_units = Torch_transformer_encoder(n_layers=n_layers, n_position=n_position)

    def forward(self, e_out):  
        '''
        e_out: b,25,37 | the output from PVAM3
        '''    
        e_argmax = e_out.argmax(dim=-1)     # b, 25
        e = self.argmax_embed(e_argmax)  # b,25,512

        e_mask = get_pad_mask(e_argmax, self.PAD)   # b,25,1
        s = self.transformer_units(e, None)   # b,25,512

        return s


class SRN_Decoder(nn.Module):
    # the wrapper of decoder layers
    '''
    n_dim: 特征空间维度
    n_class:字符种类
    N_max_character: 单张图最多只25个字符
    n_position:cnn输出的特征序列长度
    整个有三个部分的输出
    '''
    def __init__(self, n_dim=512, n_class=37, N_max_character=25, n_position=256, GSRM_layer=4 ):

        super(SRN_Decoder, self).__init__()
        
        self.pvam = PVAM(N_max_character=N_max_character, n_position=n_position)
        self.w_e = nn.Linear(n_dim, n_class)    # output layer

        self.GSRM = GSRM(n_class=n_class, PAD=n_class-1, n_dim=n_dim, n_position=N_max_character, n_layers=GSRM_layer)
        self.w_s = nn.Linear(n_dim, n_class)    # output layer

        self.w_f = nn.Linear(n_dim, n_class)    # output layer

    def forward(self, cnn_feature ):
        '''cnn_feature: b,256,512 | the output from cnn'''

        g_output = self.pvam(cnn_feature)   # b,25,512
        e_out = self.w_e(g_output)     # b,25,37 ----> cross entropy loss  |  第一个输出

        s = self.GSRM(e_out)[0]      # b,25,512
        s_out = self.w_s(s)       # b,25,37f

        # TODO:change the add to gated unit
        f = g_output + s    # b,25,512
        f_out = self.w_f(f)

        return e_out, s_out, f_out


def cal_performance(preds, gold, mask=None, smoothing='1'):
    ''' Apply label smoothing if needed '''

    loss = 0.
    n_correct = 0
    weights = [1.0, 0.15, 2.0]
    for ori_pred, weight in zip(preds, weights):
        pred = ori_pred.view(-1, ori_pred.shape[-1])
        # debug show
        t_gold = gold.view(ori_pred.shape[0], -1)
        t_pred_index = ori_pred.max(2)[1]

        mask = mask.view(-1)
        non_pad_mask = mask.ne(0) if mask is not None else None
        tloss = cal_loss(pred, gold, non_pad_mask, smoothing)
        if torch.isnan(tloss):
            print('have nan loss')
            continue
        else:
            loss += tloss * weight

        pred = pred.max(1)[1]
        gold = gold.contiguous().view(-1)
        n_correct = pred.eq(gold)
        n_correct = n_correct.masked_select(non_pad_mask).sum().item() if mask is not None else None

    return loss, n_correct


def cal_loss(pred, gold, mask, smoothing):
    ''' Calculate cross entropy loss, apply label smoothing if needed. '''

    gold = gold.contiguous().view(-1)

    if smoothing=='0':
        eps = 0.1
        n_class = pred.size(1)

        one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        log_prb = F.log_softmax(pred, dim=1)

        non_pad_mask = gold.ne(0)
        loss = -(one_hot * log_prb).sum(dim=1)
        loss = loss.masked_select(non_pad_mask).sum()  # average later
    elif smoothing == '1':
        if mask is not None:
            loss = F.cross_entropy(pred, gold, reduction='none')
            loss = loss.masked_select(mask)
            loss = loss.sum() / mask.sum()
        else:
            loss = F.cross_entropy(pred, gold)
    else:
        # loss = F.cross_entropy(pred, gold, ignore_index=PAD)
        loss = F.cross_entropy(pred, gold)

    return loss


def cal_performance2(preds, gold, PAD, smoothing='1'):
    ''' Apply label smoothing if needed '''

    loss = 0.
    n_correct = 0
    weights = [1.0, 0.15, 2.0]
    for ori_pred, weight in zip(preds, weights):
        pred = ori_pred.view(-1, ori_pred.shape[-1])
        # debug show
        t_gold = gold.view(ori_pred.shape[0], -1)
        t_pred_index = ori_pred.max(2)[1]

        tloss = cal_loss2(pred, gold, PAD, smoothing=smoothing)
        if torch.isnan(tloss):
            print('have nan loss')
            continue
        else:
            loss += tloss * weight

        pred = pred.max(1)[1]
        gold = gold.contiguous().view(-1)
        n_correct = pred.eq(gold)
        non_pad_mask = gold.ne(PAD)
        n_correct = n_correct.masked_select(non_pad_mask).sum().item()

    return loss, n_correct


def cal_loss2(pred, gold, PAD, smoothing='1'):
    ''' Calculate cross entropy loss, apply label smoothing if needed. '''

    gold = gold.contiguous().view(-1)

    if smoothing=='0':
        eps = 0.1
        n_class = pred.size(1)

        one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
        one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
        log_prb = F.log_softmax(pred, dim=1)

        non_pad_mask = gold.ne(0)
        loss = -(one_hot * log_prb).sum(dim=1)
        loss = loss.masked_select(non_pad_mask).sum()  # average later
    elif smoothing == '1':
        loss = F.cross_entropy(pred, gold, ignore_index=PAD)
    else:
        # loss = F.cross_entropy(pred, gold, ignore_index=PAD)
        loss = F.cross_entropy(pred, gold)

    return loss


if __name__=='__main__':
    cnn_feature = torch.rand((2,256,512))
    model1 = Transforme_Encoder()
    image = model1(cnn_feature,src_mask=None)[0]
    model = SRN_Decoder(N_max_character=30)

    outs = model(image)
    for out in outs:
        print(out.shape)

    # image = torch.rand((4,3,32,60))
    # tgt_seq = torch.tensor([[   2,   24, 2176,  882, 2480,  612, 1525,  480,  875,  147, 1700,  715,
    #      1465,    3],
    #     [   2,  369, 1781,  882,  703,  879, 2855, 2415,  502, 1154,  833, 1465,
    #         3,    0],
    #     [   2, 2943,  334,  328,  480,  330, 1644, 1449,  163,  147, 1823, 1184,
    #      1465,    3],
    #     [   2,   24,  396,  480,  703, 1646,  897, 1711, 1508,  703, 2321,  147,
    #       642, 1465]], device='cuda:0')
    # tgt_pos = torch.tensor([[ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14],
    #     [ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13,  0],
    #     [ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14],
    #     [ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14]],
    #    device='cuda:0')
    # src_seq = torch.tensor([[   2,  598, 2088,  822, 2802, 1156,  157, 1099, 1000,  598, 1707, 1345,
    #         3,    0,    0, 0],
    #     [   2,  598, 2348,  822,  598, 1222,  471,  948,  986,  423, 1345,    3,
    #         0,    0,    0, 0],
    #     [   2, 2437, 2470,  901, 2473,  598, 1735,   84,    1, 2277, 1979,  499,
    #       962, 1345,    3, 0],
    #     [   2,  598,  186, 1904,  598,  868, 1339, 1604,   84,  598,  608, 1728,
    #      1345,    3,    0, 0]], device='cuda:0')

    # device = torch.device('cuda')
    # image = image.cuda()
    # transformer = Transformer()
    # transformer = transformer.to(device)
    # transformer.train()
    # out = transformer(image, tgt_seq, tgt_pos, src_seq)
    
    # gold = tgt_seq[:, 1:]           # 从第二列开始

    # # backward
    # loss, n_correct = cal_performance(out, gold, smoothing=True)
    # print(loss, n_correct)
    # a = 1