Spaces:
Build error
Build error
File size: 18,035 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
# coding:utf-8
# chenjun
# date:2020-04-18
import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
# def get_non_pad_mask(seq, PAD):
# assert seq.dim() == 2
# return seq.ne(PAD).type(torch.float).unsqueeze(-1)
def get_pad_mask(seq, pad_idx):
return (seq == pad_idx).unsqueeze(-2)
def get_subsequent_mask(seq):
''' For masking out the subsequent info. '''
sz_b, len_s = seq.size()
subsequent_mask = torch.triu(
torch.ones((len_s, len_s), device=seq.device, dtype=torch.uint8), diagonal=1) # 返回上三角矩阵
subsequent_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1) # b x ls x ls
return subsequent_mask
def get_attn_key_pad_mask(seq_k, seq_q, PAD):
''' For masking out the padding part of key sequence.
seq_k:src_seq
seq_q:tgt_seq
'''
# Expand to fit the shape of key query attention matrix.
len_q = seq_q.size(1) # 目标序列
padding_mask = seq_k.eq(PAD) # 源序列
padding_mask = padding_mask.unsqueeze(1).expand(-1, len_q, -1) # b x lq x lk
return padding_mask
class PositionalEncoding(nn.Module):
def __init__(self, d_hid, n_position=200):
super(PositionalEncoding, self).__init__()
# Not a parameter
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))
def _get_sinusoid_encoding_table(self, n_position, d_hid):
''' Sinusoid position encoding table '''
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
def forward(self, x):
return x + self.pos_table[:, :x.size(1)].clone().detach()
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, attn_dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, q, k, v, mask=None):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
if mask is not None:
# print(mask.shape, attn.shape, v.shape)
attn = attn.masked_fill(mask, -1e9)
attn = self.softmax(attn) # 第3个维度为权重
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k)
self.w_ks = nn.Linear(d_model, n_head * d_k)
self.w_vs = nn.Linear(d_model, n_head * d_v)
nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
self.layer_norm = nn.LayerNorm(d_model)
self.fc = nn.Linear(n_head * d_v, d_model)
nn.init.xavier_normal_(self.fc.weight)
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.size()
sz_b, len_k, _ = k.size()
sz_b, len_v, _ = v.size()
residual = q
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) # 4*21*512 ---- 4*21*8*64
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
mask = mask.repeat(n_head, 1, 1) if mask is not None else None # (n*b) x .. x ..
output, attn = self.attention(q, k, v, mask=mask)
output = output.view(n_head, sz_b, len_q, d_v)
output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv)
output = self.dropout(self.fc(output))
output = self.layer_norm(output + residual)
return output, attn
class PositionwiseFeedForward(nn.Module):
''' A two-feed-forward-layer module '''
def __init__(self, d_in, d_hid, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise
self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise
self.layer_norm = nn.LayerNorm(d_in)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
residual = x
output = x.transpose(1, 2)
output = self.w_2(F.relu(self.w_1(output)))
output = output.transpose(1, 2)
output = self.dropout(output)
output = self.layer_norm(output + residual)
return output
class EncoderLayer(nn.Module):
''' Compose with two layers '''
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1):
super(EncoderLayer, self).__init__()
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout)
def forward(self, enc_input, slf_attn_mask=None):
enc_output, enc_slf_attn = self.slf_attn(
enc_input, enc_input, enc_input, mask=slf_attn_mask)
enc_output = self.pos_ffn(enc_output)
return enc_output, enc_slf_attn
class Torch_transformer_encoder(nn.Module):
'''
use pytorch transformer for sequence learning
'''
def __init__(self, d_word_vec=512, n_layers=2, n_head=8, d_model=512, dim_feedforward=1024, n_position=256):
super(Torch_transformer_encoder, self).__init__()
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=n_head, dim_feedforward=dim_feedforward)
self.layer_norm = nn.LayerNorm(d_model)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=n_layers, norm=self.layer_norm)
self.dropout = nn.Dropout(p=0.1)
def forward(self, cnn_feature, src_mask=None, return_attns=False):
enc_slf_attn_list = []
# -- Forward
enc_output = self.dropout(self.position_enc(cnn_feature)) # position embeding
enc_output = self.encoder(enc_output)
enc_output = self.layer_norm(enc_output)
if return_attns:
return enc_output, enc_slf_attn_list
return enc_output,
class Transforme_Encoder(nn.Module):
''' to capture the global spatial dependencies'''
'''
d_word_vec: 位置编码,特征空间维度
n_layers: transformer的层数
n_head:多头数量
d_k: 64
d_v: 64
d_model: 512,
d_inner: 1024
n_position: 位置编码的最大值
'''
def __init__(
self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64,
d_model=512, d_inner=1024, dropout=0.1, n_position=256):
super().__init__()
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position)
self.dropout = nn.Dropout(p=dropout)
self.layer_stack = nn.ModuleList([
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout)
for _ in range(n_layers)])
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, cnn_feature, src_mask, return_attns=False):
enc_slf_attn_list = []
# -- Forward
enc_output = self.dropout(self.position_enc(cnn_feature)) # position embeding
for enc_layer in self.layer_stack:
enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask)
enc_slf_attn_list += [enc_slf_attn] if return_attns else []
enc_output = self.layer_norm(enc_output)
if return_attns:
return enc_output, enc_slf_attn_list
return enc_output,
class PVAM(nn.Module):
''' Parallel Visual attention module 平行解码'''
'''
n_dim:512,阅读顺序序列编码的空间维度
N_max_character: 25,单张图片最多有多少个字符
n_position: cnn出来之后特征的序列长度
'''
def __init__(self, n_dim=512, N_max_character=25, n_position=256):
super(PVAM, self).__init__()
self.character_len = N_max_character
self.f0_embedding = nn.Embedding(N_max_character, n_dim)
self.w0 = nn.Linear(N_max_character, n_position)
self.wv = nn.Linear(n_dim, n_dim)
# first linear(512,25)
self.we = nn.Linear(n_dim, N_max_character)
self.active = nn.Tanh()
self.softmax = nn.Softmax(dim=2)
def forward(self, enc_output):
reading_order = torch.arange(self.character_len, dtype=torch.long, device=enc_output.device)
reading_order = reading_order.unsqueeze(0).expand(enc_output.size(0), -1) # (S,) -> (B, S)
reading_order_embed = self.f0_embedding(reading_order) # b,25,512
t = self.w0(reading_order_embed.permute(0,2,1)) # b,512,256
t = self.active(t.permute(0,2,1) + self.wv(enc_output)) # b,256,512
# first linear(512,25)
attn = self.we(t) # b,256,25
attn = self.softmax(attn.permute(0,2,1)) # b,25,256
g_output = torch.bmm(attn, enc_output) # b,25,512
return g_output
class GSRM(nn.Module):
# global semantic reasoning module
'''
n_dim:embed编码的特征空间维度
n_class:embedding需要用到
PAD:计算mask用到
'''
def __init__(self, n_dim=512, n_class=37, PAD=37-1, n_layers=4, n_position=25):
super(GSRM, self).__init__()
self.PAD = PAD
self.argmax_embed = nn.Embedding(n_class, n_dim)
self.transformer_units = Transforme_Encoder(n_layers=n_layers, n_position=n_position) # for global context information
# self.transformer_units = Torch_transformer_encoder(n_layers=n_layers, n_position=n_position)
def forward(self, e_out):
'''
e_out: b,25,37 | the output from PVAM3
'''
e_argmax = e_out.argmax(dim=-1) # b, 25
e = self.argmax_embed(e_argmax) # b,25,512
e_mask = get_pad_mask(e_argmax, self.PAD) # b,25,1
s = self.transformer_units(e, None) # b,25,512
return s
class SRN_Decoder(nn.Module):
# the wrapper of decoder layers
'''
n_dim: 特征空间维度
n_class:字符种类
N_max_character: 单张图最多只25个字符
n_position:cnn输出的特征序列长度
整个有三个部分的输出
'''
def __init__(self, n_dim=512, n_class=37, N_max_character=25, n_position=256, GSRM_layer=4 ):
super(SRN_Decoder, self).__init__()
self.pvam = PVAM(N_max_character=N_max_character, n_position=n_position)
self.w_e = nn.Linear(n_dim, n_class) # output layer
self.GSRM = GSRM(n_class=n_class, PAD=n_class-1, n_dim=n_dim, n_position=N_max_character, n_layers=GSRM_layer)
self.w_s = nn.Linear(n_dim, n_class) # output layer
self.w_f = nn.Linear(n_dim, n_class) # output layer
def forward(self, cnn_feature ):
'''cnn_feature: b,256,512 | the output from cnn'''
g_output = self.pvam(cnn_feature) # b,25,512
e_out = self.w_e(g_output) # b,25,37 ----> cross entropy loss | 第一个输出
s = self.GSRM(e_out)[0] # b,25,512
s_out = self.w_s(s) # b,25,37f
# TODO:change the add to gated unit
f = g_output + s # b,25,512
f_out = self.w_f(f)
return e_out, s_out, f_out
def cal_performance(preds, gold, mask=None, smoothing='1'):
''' Apply label smoothing if needed '''
loss = 0.
n_correct = 0
weights = [1.0, 0.15, 2.0]
for ori_pred, weight in zip(preds, weights):
pred = ori_pred.view(-1, ori_pred.shape[-1])
# debug show
t_gold = gold.view(ori_pred.shape[0], -1)
t_pred_index = ori_pred.max(2)[1]
mask = mask.view(-1)
non_pad_mask = mask.ne(0) if mask is not None else None
tloss = cal_loss(pred, gold, non_pad_mask, smoothing)
if torch.isnan(tloss):
print('have nan loss')
continue
else:
loss += tloss * weight
pred = pred.max(1)[1]
gold = gold.contiguous().view(-1)
n_correct = pred.eq(gold)
n_correct = n_correct.masked_select(non_pad_mask).sum().item() if mask is not None else None
return loss, n_correct
def cal_loss(pred, gold, mask, smoothing):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
gold = gold.contiguous().view(-1)
if smoothing=='0':
eps = 0.1
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
non_pad_mask = gold.ne(0)
loss = -(one_hot * log_prb).sum(dim=1)
loss = loss.masked_select(non_pad_mask).sum() # average later
elif smoothing == '1':
if mask is not None:
loss = F.cross_entropy(pred, gold, reduction='none')
loss = loss.masked_select(mask)
loss = loss.sum() / mask.sum()
else:
loss = F.cross_entropy(pred, gold)
else:
# loss = F.cross_entropy(pred, gold, ignore_index=PAD)
loss = F.cross_entropy(pred, gold)
return loss
def cal_performance2(preds, gold, PAD, smoothing='1'):
''' Apply label smoothing if needed '''
loss = 0.
n_correct = 0
weights = [1.0, 0.15, 2.0]
for ori_pred, weight in zip(preds, weights):
pred = ori_pred.view(-1, ori_pred.shape[-1])
# debug show
t_gold = gold.view(ori_pred.shape[0], -1)
t_pred_index = ori_pred.max(2)[1]
tloss = cal_loss2(pred, gold, PAD, smoothing=smoothing)
if torch.isnan(tloss):
print('have nan loss')
continue
else:
loss += tloss * weight
pred = pred.max(1)[1]
gold = gold.contiguous().view(-1)
n_correct = pred.eq(gold)
non_pad_mask = gold.ne(PAD)
n_correct = n_correct.masked_select(non_pad_mask).sum().item()
return loss, n_correct
def cal_loss2(pred, gold, PAD, smoothing='1'):
''' Calculate cross entropy loss, apply label smoothing if needed. '''
gold = gold.contiguous().view(-1)
if smoothing=='0':
eps = 0.1
n_class = pred.size(1)
one_hot = torch.zeros_like(pred).scatter(1, gold.view(-1, 1), 1)
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1)
log_prb = F.log_softmax(pred, dim=1)
non_pad_mask = gold.ne(0)
loss = -(one_hot * log_prb).sum(dim=1)
loss = loss.masked_select(non_pad_mask).sum() # average later
elif smoothing == '1':
loss = F.cross_entropy(pred, gold, ignore_index=PAD)
else:
# loss = F.cross_entropy(pred, gold, ignore_index=PAD)
loss = F.cross_entropy(pred, gold)
return loss
if __name__=='__main__':
cnn_feature = torch.rand((2,256,512))
model1 = Transforme_Encoder()
image = model1(cnn_feature,src_mask=None)[0]
model = SRN_Decoder(N_max_character=30)
outs = model(image)
for out in outs:
print(out.shape)
# image = torch.rand((4,3,32,60))
# tgt_seq = torch.tensor([[ 2, 24, 2176, 882, 2480, 612, 1525, 480, 875, 147, 1700, 715,
# 1465, 3],
# [ 2, 369, 1781, 882, 703, 879, 2855, 2415, 502, 1154, 833, 1465,
# 3, 0],
# [ 2, 2943, 334, 328, 480, 330, 1644, 1449, 163, 147, 1823, 1184,
# 1465, 3],
# [ 2, 24, 396, 480, 703, 1646, 897, 1711, 1508, 703, 2321, 147,
# 642, 1465]], device='cuda:0')
# tgt_pos = torch.tensor([[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
# [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0],
# [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
# [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]],
# device='cuda:0')
# src_seq = torch.tensor([[ 2, 598, 2088, 822, 2802, 1156, 157, 1099, 1000, 598, 1707, 1345,
# 3, 0, 0, 0],
# [ 2, 598, 2348, 822, 598, 1222, 471, 948, 986, 423, 1345, 3,
# 0, 0, 0, 0],
# [ 2, 2437, 2470, 901, 2473, 598, 1735, 84, 1, 2277, 1979, 499,
# 962, 1345, 3, 0],
# [ 2, 598, 186, 1904, 598, 868, 1339, 1604, 84, 598, 608, 1728,
# 1345, 3, 0, 0]], device='cuda:0')
# device = torch.device('cuda')
# image = image.cuda()
# transformer = Transformer()
# transformer = transformer.to(device)
# transformer.train()
# out = transformer(image, tgt_seq, tgt_pos, src_seq)
# gold = tgt_seq[:, 1:] # 从第二列开始
# # backward
# loss, n_correct = cal_performance(out, gold, smoothing=True)
# print(loss, n_correct)
# a = 1 |