Spaces:
Build error
Build error
File size: 10,802 Bytes
d61b9c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import numpy
class QuantileVector:
"""
Streaming randomized quantile computation for numpy.
Add any amount of data repeatedly via add(data). At any time,
quantile estimates (or old-style percentiles) can be read out using
quantiles(q) or percentiles(p).
Accuracy scales according to resolution: the default is to
set resolution to be accurate to better than 0.1%,
while limiting storage to about 50,000 samples.
Good for computing quantiles of huge data without using much memory.
Works well on arbitrary data with probability near 1.
Based on the optimal KLL quantile algorithm by Karnin, Lang, and Liberty
from FOCS 2016. http://ieee-focs.org/FOCS-2016-Papers/3933a071.pdf
"""
def __init__(self, depth=1, resolution=24 * 1024, buffersize=None,
dtype=None, seed=None):
self.resolution = resolution
self.depth = depth
# Default buffersize: 128 samples (and smaller than resolution).
if buffersize is None:
buffersize = min(128, (resolution + 7) // 8)
self.buffersize = buffersize
self.samplerate = 1.0
self.data = [numpy.zeros(shape=(depth, resolution), dtype=dtype)]
self.firstfree = [0]
self.random = numpy.random.RandomState(seed)
self.extremes = numpy.empty(shape=(depth, 2), dtype=dtype)
self.extremes.fill(numpy.NaN)
self.size = 0
def add(self, incoming):
assert len(incoming.shape) == 2
assert incoming.shape[1] == self.depth
self.size += incoming.shape[0]
# Convert to a flat numpy array.
if self.samplerate >= 1.0:
self._add_every(incoming)
return
# If we are sampling, then subsample a large chunk at a time.
self._scan_extremes(incoming)
chunksize = numpy.ceil[self.buffersize / self.samplerate]
for index in range(0, len(incoming), chunksize):
batch = incoming[index:index+chunksize]
sample = batch[self.random.binomial(1, self.samplerate, len(batch))]
self._add_every(sample)
def _add_every(self, incoming):
supplied = len(incoming)
index = 0
while index < supplied:
ff = self.firstfree[0]
available = self.data[0].shape[1] - ff
if available == 0:
if not self._shift():
# If we shifted by subsampling, then subsample.
incoming = incoming[index:]
if self.samplerate >= 0.5:
print('SAMPLING')
self._scan_extremes(incoming)
incoming = incoming[self.random.binomial(1, 0.5,
len(incoming - index))]
index = 0
supplied = len(incoming)
ff = self.firstfree[0]
available = self.data[0].shape[1] - ff
copycount = min(available, supplied - index)
self.data[0][:,ff:ff + copycount] = numpy.transpose(
incoming[index:index + copycount,:])
self.firstfree[0] += copycount
index += copycount
def _shift(self):
index = 0
# If remaining space at the current layer is less than half prev
# buffer size (rounding up), then we need to shift it up to ensure
# enough space for future shifting.
while self.data[index].shape[1] - self.firstfree[index] < (
-(-self.data[index-1].shape[1] // 2) if index else 1):
if index + 1 >= len(self.data):
return self._expand()
data = self.data[index][:,0:self.firstfree[index]]
data.sort()
if index == 0 and self.samplerate >= 1.0:
self._update_extremes(data[:,0], data[:,-1])
offset = self.random.binomial(1, 0.5)
position = self.firstfree[index + 1]
subset = data[:,offset::2]
self.data[index + 1][:,position:position + subset.shape[1]] = subset
self.firstfree[index] = 0
self.firstfree[index + 1] += subset.shape[1]
index += 1
return True
def _scan_extremes(self, incoming):
# When sampling, we need to scan every item still to get extremes
self._update_extremes(
numpy.nanmin(incoming, axis=0),
numpy.nanmax(incoming, axis=0))
def _update_extremes(self, minr, maxr):
self.extremes[:,0] = numpy.nanmin(
[self.extremes[:, 0], minr], axis=0)
self.extremes[:,-1] = numpy.nanmax(
[self.extremes[:, -1], maxr], axis=0)
def minmax(self):
if self.firstfree[0]:
self._scan_extremes(self.data[0][:,:self.firstfree[0]].transpose())
return self.extremes.copy()
def _expand(self):
cap = self._next_capacity()
if cap > 0:
# First, make a new layer of the proper capacity.
self.data.insert(0, numpy.empty(
shape=(self.depth, cap), dtype=self.data[-1].dtype))
self.firstfree.insert(0, 0)
else:
# Unless we're so big we are just subsampling.
assert self.firstfree[0] == 0
self.samplerate *= 0.5
for index in range(1, len(self.data)):
# Scan for existing data that needs to be moved down a level.
amount = self.firstfree[index]
if amount == 0:
continue
position = self.firstfree[index-1]
# Move data down if it would leave enough empty space there
# This is the key invariant: enough empty space to fit half
# of the previous level's buffer size (rounding up)
if self.data[index-1].shape[1] - (amount + position) >= (
-(-self.data[index-2].shape[1] // 2) if (index-1) else 1):
self.data[index-1][:,position:position + amount] = (
self.data[index][:,:amount])
self.firstfree[index-1] += amount
self.firstfree[index] = 0
else:
# Scrunch the data if it would not.
data = self.data[index][:,:amount]
data.sort()
if index == 1:
self._update_extremes(data[:,0], data[:,-1])
offset = self.random.binomial(1, 0.5)
scrunched = data[:,offset::2]
self.data[index][:,:scrunched.shape[1]] = scrunched
self.firstfree[index] = scrunched.shape[1]
return cap > 0
def _next_capacity(self):
cap = numpy.ceil(self.resolution * numpy.power(0.67, len(self.data)))
if cap < 2:
return 0
return max(self.buffersize, int(cap))
def _weighted_summary(self, sort=True):
if self.firstfree[0]:
self._scan_extremes(self.data[0][:,:self.firstfree[0]].transpose())
size = sum(self.firstfree) + 2
weights = numpy.empty(
shape=(size), dtype='float32') # floating point
summary = numpy.empty(
shape=(self.depth, size), dtype=self.data[-1].dtype)
weights[0:2] = 0
summary[:,0:2] = self.extremes
index = 2
for level, ff in enumerate(self.firstfree):
if ff == 0:
continue
summary[:,index:index + ff] = self.data[level][:,:ff]
weights[index:index + ff] = numpy.power(2.0, level)
index += ff
assert index == summary.shape[1]
if sort:
order = numpy.argsort(summary)
summary = summary[numpy.arange(self.depth)[:,None], order]
weights = weights[order]
return (summary, weights)
def quantiles(self, quantiles, old_style=False):
if self.size == 0:
return numpy.full((self.depth, len(quantiles)), numpy.nan)
summary, weights = self._weighted_summary()
cumweights = numpy.cumsum(weights, axis=-1) - weights / 2
if old_style:
# To be convenient with numpy.percentile
cumweights -= cumweights[:,0:1]
cumweights /= cumweights[:,-1:]
else:
cumweights /= numpy.sum(weights, axis=-1, keepdims=True)
result = numpy.empty(shape=(self.depth, len(quantiles)))
for d in range(self.depth):
result[d] = numpy.interp(quantiles, cumweights[d], summary[d])
return result
def integrate(self, fun):
result = None
for level, ff in enumerate(self.firstfree):
if ff == 0:
continue
term = numpy.sum(
fun(self.data[level][:,:ff]) * numpy.power(2.0, level),
axis=-1)
if result is None:
result = term
else:
result += term
if result is not None:
result /= self.samplerate
return result
def percentiles(self, percentiles):
return self.quantiles(percentiles, old_style=True)
def readout(self, count, old_style=True):
return self.quantiles(
numpy.linspace(0.0, 1.0, count), old_style=old_style)
if __name__ == '__main__':
import time
# An adverarial case: we keep finding more numbers in the middle
# as the stream goes on.
amount = 10000000
percentiles = 1000
data = numpy.arange(float(amount))
data[1::2] = data[-1::-2] + (len(data) - 1)
data /= 2
depth = 50
alldata = data[:,None] + (numpy.arange(depth) * amount)[None, :]
actual_sum = numpy.sum(alldata * alldata, axis=0)
amt = amount // depth
for r in range(depth):
numpy.random.shuffle(alldata[r*amt:r*amt+amt,r])
# data[::2] = data[-2::-2]
# numpy.random.shuffle(data)
starttime = time.time()
qc = QuantileVector(depth=depth, resolution=8 * 1024)
qc.add(alldata)
ro = qc.readout(1001)
endtime = time.time()
# print 'ro', ro
# print ro - numpy.linspace(0, amount, percentiles+1)
gt = numpy.linspace(0, amount, percentiles+1)[None,:] + (
numpy.arange(qc.depth) * amount)[:,None]
print("Maximum relative deviation among %d perentiles:" % percentiles, (
numpy.max(abs(ro - gt) / amount) * percentiles))
print("Minmax eror %f, %f" % (
max(abs(qc.minmax()[:,0] - numpy.arange(qc.depth) * amount)),
max(abs(qc.minmax()[:, -1] - (numpy.arange(qc.depth)+1) * amount + 1))))
print("Integral error:", numpy.max(numpy.abs(
qc.integrate(lambda x: x * x)
- actual_sum) / actual_sum))
print("Count error: ", (qc.integrate(lambda x: numpy.ones(x.shape[-1])
) - qc.size) / (0.0 + qc.size))
print("Time", (endtime - starttime))
|