Spaces:
Build error
Build error
#!/usr/bin/env python3 | |
import os | |
import torch | |
import torch.nn as nn | |
import torchvision | |
import torchvision.transforms as transforms | |
from captum.insights import AttributionVisualizer, Batch | |
from captum.insights.attr_vis.features import ImageFeature | |
def get_classes(): | |
classes = [ | |
"Plane", | |
"Car", | |
"Bird", | |
"Cat", | |
"Deer", | |
"Dog", | |
"Frog", | |
"Horse", | |
"Ship", | |
"Truck", | |
] | |
return classes | |
def get_pretrained_model(): | |
class Net(nn.Module): | |
def __init__(self) -> None: | |
super(Net, self).__init__() | |
self.conv1 = nn.Conv2d(3, 6, 5) | |
self.pool1 = nn.MaxPool2d(2, 2) | |
self.pool2 = nn.MaxPool2d(2, 2) | |
self.conv2 = nn.Conv2d(6, 16, 5) | |
self.fc1 = nn.Linear(16 * 5 * 5, 120) | |
self.fc2 = nn.Linear(120, 84) | |
self.fc3 = nn.Linear(84, 10) | |
self.relu1 = nn.ReLU() | |
self.relu2 = nn.ReLU() | |
self.relu3 = nn.ReLU() | |
self.relu4 = nn.ReLU() | |
def forward(self, x): | |
x = self.pool1(self.relu1(self.conv1(x))) | |
x = self.pool2(self.relu2(self.conv2(x))) | |
x = x.view(-1, 16 * 5 * 5) | |
x = self.relu3(self.fc1(x)) | |
x = self.relu4(self.fc2(x)) | |
x = self.fc3(x) | |
return x | |
net = Net() | |
pt_path = os.path.abspath( | |
os.path.join(os.path.dirname(__file__), "models/cifar_torchvision.pt") | |
) | |
net.load_state_dict(torch.load(pt_path)) | |
return net | |
def baseline_func(input): | |
return input * 0 | |
def formatted_data_iter(): | |
dataset = torchvision.datasets.CIFAR10( | |
root="data/test", train=False, download=True, transform=transforms.ToTensor() | |
) | |
dataloader = iter( | |
torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=False, num_workers=2) | |
) | |
while True: | |
images, labels = next(dataloader) | |
yield Batch(inputs=images, labels=labels) | |
def main(): | |
normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
model = get_pretrained_model() | |
visualizer = AttributionVisualizer( | |
models=[model], | |
score_func=lambda o: torch.nn.functional.softmax(o, 1), | |
classes=get_classes(), | |
features=[ | |
ImageFeature( | |
"Photo", | |
baseline_transforms=[baseline_func], | |
input_transforms=[normalize], | |
) | |
], | |
dataset=formatted_data_iter(), | |
) | |
visualizer.serve(debug=True) | |
if __name__ == "__main__": | |
main() | |