strexp / captum_improve_matrn.py
markytools's picture
added strexp
d61b9c7
raw
history blame
40.3 kB
import os
import time
import string
import argparse
import re
import sys
import random
import pickle
import logging
from fastai.distributed import *
from fastai.vision import *
import glob
import settings
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from skimage.color import gray2rgb
from nltk.metrics.distance import edit_distance
import cv2
import pickle
import copy
# from dataset import hierarchical_dataset, AlignCollate
# from model import Model, SuperPixler, CastNumpy, STRScore
# import hiddenlayer as hl
from callbacks import DumpPrediction, IterationCallback, TextAccuracy, TopKTextAccuracy
from dataset_matrn import ImageDataset, CustomImageDataset, TextDataset
from losses_matrn import MultiLosses
from lime import lime_image
import matplotlib.pyplot as plt
import random
from transforms import CVColorJitter, CVDeterioration, CVGeometry
from utils_matrn import Config, Logger, CharsetMapper, MyConcatDataset
from utils import SRNConverter
from model_matrn import STRScore
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
from captum_test import acquire_average_auc, acquire_bestacc_attr, acquireAttribution, saveAttrData
# device = torch.device('cpu')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from captum.attr import (
GradientShap,
DeepLift,
DeepLiftShap,
IntegratedGradients,
LayerConductance,
NeuronConductance,
NoiseTunnel,
Saliency,
InputXGradient,
GuidedBackprop,
Deconvolution,
GuidedGradCam,
FeatureAblation,
ShapleyValueSampling,
Lime,
KernelShap
)
from captum.metrics import (
infidelity,
sensitivity_max
)
from captum.attr._utils.visualization import visualize_image_attr
### Acquire pixelwise attributions and replace them with ranked numbers averaged
### across segmentation with the largest contribution having the largest number
### and the smallest set to 1, which is the minimum number.
### attr - original attribution
### segm - image segmentations
def rankedAttributionsBySegm(attr, segm):
aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm)
totalSegm = len(sortedDict.keys()) # total segmentations
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
currentRank = totalSegm
rankedSegmImg = torch.clone(attr)
for totalSegToHide in range(0, len(sortedKeys)):
currentSegmentToHide = sortedKeys[totalSegToHide]
rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank
currentRank -= 1
return rankedSegmImg
### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
averagedInput = torch.clone(attr)
sortedDict = {}
for x in np.unique(segments):
segmentMean = torch.mean(attr[segments == x][:])
sortedDict[x] = float(segmentMean.detach().cpu().numpy())
averagedInput[segments == x] = segmentMean
return averagedInput, sortedDict
def acquireSelectivityHit(origImg, attributions, segmentations, model, charset, labels, scoring):
# print("segmentations unique len: ", np.unique(segmentations))
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
# print("aveSegmentations unique len: ", np.unique(aveSegmentations))
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
# print("aveSegmentations: ", aveSegmentations)
n_correct = []
confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
clonedImg = torch.clone(origImg)
gt = labels
for totalSegToHide in range(0, len(sortedKeys)):
### Acquire LIME prediction result
currentSegmentToHide = sortedKeys[totalSegToHide]
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
modelOut = model(clonedImg) ### Returns a tuple of dictionaries
confScore = scoring(modelOut).cpu().detach().numpy()
pred, _, __ = postprocess(modelOut[0], charset, config.model_eval)
pred = pred[0] # outputs a list, so query [0]
if pred.lower() == gt.lower(): ### not lowercase gt labels, pred only predicts lowercase
n_correct.append(1)
else:
n_correct.append(0)
confScore = confScore[0][0]*100
confidenceList.append(confScore)
return n_correct, confidenceList
def _get_dataset(ds_type, paths, is_training, config, **kwargs):
kwargs.update({
'img_h': config.dataset_image_height,
'img_w': config.dataset_image_width,
'max_length': config.dataset_max_length,
'case_sensitive': config.dataset_case_sensitive,
'charset_path': config.dataset_charset_path,
'data_aug': config.dataset_data_aug,
'deteriorate_ratio': config.dataset_deteriorate_ratio,
'is_training': is_training,
'multiscales': config.dataset_multiscales,
'one_hot_y': config.dataset_one_hot_y,
})
datasets = [ds_type(p, **kwargs) for p in paths]
if len(datasets) > 1: return MyConcatDataset(datasets)
else: return datasets[0]
def get_model(config):
import importlib
names = config.model_name.split('.')
module_name, class_name = '.'.join(names[:-1]), names[-1]
cls = getattr(importlib.import_module(module_name), class_name)
model = cls(config)
logging.info(model)
model = model.eval()
return model
def preprocess(img, width, height):
img = cv2.resize(np.array(img), (width, height))
img = transforms.ToTensor()(img).unsqueeze(0)
mean = torch.tensor([0.485, 0.456, 0.406])
std = torch.tensor([0.229, 0.224, 0.225])
return (img-mean[...,None,None]) / std[...,None,None]
def postprocess(output, charset, model_eval):
def _get_output(last_output, model_eval):
if isinstance(last_output, (tuple, list)):
for res in last_output:
if res['name'] == model_eval: output = res
else: output = last_output
return output
def _decode(logit):
""" Greed decode """
out = F.softmax(logit, dim=2)
pt_text, pt_scores, pt_lengths = [], [], []
for o in out:
text = charset.get_text(o.argmax(dim=1), padding=False, trim=False)
text = text.split(charset.null_char)[0] # end at end-token
pt_text.append(text)
pt_scores.append(o.max(dim=1)[0])
pt_lengths.append(min(len(text) + 1, charset.max_length)) # one for end-token
return pt_text, pt_scores, pt_lengths
output = _get_output(output, model_eval)
logits, pt_lengths = output['logits'], output['pt_lengths']
pt_text, pt_scores, pt_lengths_ = _decode(logits)
return pt_text, pt_scores, pt_lengths_
def load(model, file, device=None, strict=True):
if device is None: device = 'cpu'
elif isinstance(device, int): device = torch.device('cuda', device)
assert os.path.isfile(file)
state = torch.load(file, map_location=device)
if set(state.keys()) == {'model', 'opt'}:
state = state['model']
model.load_state_dict(state, strict=strict)
return model
def main(config):
height = config.imgH
width = config.imgW
# 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
targetDataset = settings.TARGET_DATASET # Change also the configs/train_matrn.yaml test.roots test folder
segmRootDir = "{}/{}X{}/{}/".format(settings.SEGM_DIR, height, width, targetDataset)
outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, targetDataset)
outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, targetDataset)
attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, targetDataset)
resumePkl = "" # Use to resume when session destroyed. Set to "" to disable
resumePkl2 = "" # To enable global resume 2nd part. Set to "" to disable
acquireSelectivity = True
acquireInfidelity = False
acquireSensitivity = False
if not os.path.exists(outputDir):
os.makedirs(outputDir)
if not os.path.exists(attrOutputDir):
os.makedirs(attrOutputDir)
config.character = "abcdefghijklmnopqrstuvwxyz1234567890$#" # See charset_36.txt
converter = SRNConverter(config.character, 36)
model = get_model(config).to(device)
model = load(model, config.model_checkpoint, device=device)
charset = CharsetMapper(filename=config.dataset_charset_path,
max_length=config.dataset_max_length + 1)
# if os.path.isdir(args.input):
# paths = [os.path.join(args.input, fname) for fname in os.listdir(args.input)]
# else:
# paths = glob.glob(os.path.expanduser(args.input))
# assert paths, "The input path(s) was not found"
# paths = sorted(paths)
# for path in tqdm.tqdm(paths):
# img = PIL.Image.open(path).convert('RGB')
# img = preprocess(img, config.dataset_image_width, config.dataset_image_height)
# img = img.to(device)
""" evaluation """
modelCopy = copy.deepcopy(model)
scoring_singlechar = STRScore(config=config, charsetMapper=charset, postprocessFunc=postprocess, device=device, enableSingleCharAttrAve=True)
super_pixel_model_singlechar = torch.nn.Sequential(
modelCopy,
scoring_singlechar
).to(device)
modelCopy.eval()
scoring_singlechar.eval()
super_pixel_model_singlechar.eval()
scoring = STRScore(config=config, charsetMapper=charset, postprocessFunc=postprocess, device=device)
### SuperModel
super_pixel_model = torch.nn.Sequential(
model,
scoring
).to(device)
model.eval()
scoring.eval()
super_pixel_model.eval()
selectivity_eval_results = []
if config.blackbg:
shapImgLs = np.zeros(shape=(1, 3, 32, 128)).astype(np.float32)
trainList = np.array(shapImgLs)
background = torch.from_numpy(trainList).to(device)
# define a perturbation function for the input (used for calculating infidelity)
# def perturb_fn(modelInputs):
# noise = torch.tensor(np.random.normal(0, 0.003, modelInputs.shape)).float()
# noise = noise.to(device)
# return noise, modelInputs - noise
strict = ifnone(config.model_strict, True)
### Dataset not shuffled because it is not a dataloader, just a dataset
valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
# print("valid_ds: ", len(valid_ds[0]))
testImgCount = 0
if resumePkl != "":
with open(resumePkl, 'rb') as filePkl:
selectivity_eval_results = pickle.load(filePkl)
for h in range(1, len(selectivity_eval_results)):
if "testImgCount" in selectivity_eval_results[-h]:
testImgCount = selectivity_eval_results[-h]["testImgCount"] # ResumeCount
break
try:
for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
if i <= testImgCount:
continue
orig_img_tensors = orig_img_tensors.unsqueeze(0)
# print("orig_img_tensors: ", orig_img_tensors.shape) # (3, 32, 128)
# img_rgb *= 255.0
# img_rgb = img_rgb.astype('int')
# print("img_rgb max: ", img_rgb.max()) ### 255
# img_rgb = np.asarray(orig_img_tensors)
# segmentations = segmentation_fn(img_rgb)
# print("segmentations shape: ", segmentations.shape) # (224, 224)
# print("segmentations min: ", segmentations.min()) 0
# print("Unique: ", len(np.unique(segmentations))) # (70)
results_dict = {}
with open(segmRootDir + "{}.pkl".format(i), 'rb') as f:
pklData = pickle.load(f)
# segmData, labels = segAndLabels[0]
segmDataNP = pklData["segdata"]
labels = labels.lower() # For fair evaluation for all
assert pklData['label'] == labels
# labels = "lama0"
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
segmTensor = segmTensor.to(device)
# print("segmTensor shape: ", segmTensor.shape)
# img1 = np.asarray(imgPIL.convert('L'))
# sys.exit()
# img1 = img1 / 255.0
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
img1 = orig_img_tensors.to(device)
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
## Required preprocessing for MATRN
mean = torch.tensor([0.485, 0.456, 0.406])
std = torch.tensor([0.229, 0.224, 0.225])
img1 = (img1-mean[...,None,None]) / std[...,None,None]
# preds = model(img1, seqlen=converter.batch_max_length)
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
### Integrated Gradients
ig = IntegratedGradients(super_pixel_model)
attributions = ig.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["intgrad_acc"] = n_correct
results_dict["intgrad_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["intgrad_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy())
results_dict["intgrad_sens"] = sens
### Gradient SHAP using zero-background
gs = GradientShap(super_pixel_model)
# We define a distribution of baselines and draw `n_samples` from that
# distribution in order to estimate the expectations of gradients across all baselines
baseline_dist = torch.zeros((1, 3, height, width))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["gradshap_acc"] = n_correct
results_dict["gradshap_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["gradshap_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["gradshap_sens"] = sens
### DeepLift using zero-background
dl = DeepLift(super_pixel_model)
attributions = dl.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["deeplift_acc"] = n_correct
results_dict["deeplift_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["deeplift_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy())
results_dict["deeplift_sens"] = sens
### Saliency
saliency = Saliency(super_pixel_model)
attributions = saliency.attribute(input, target=0) ### target=class0
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_saliency.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["saliency_acc"] = n_correct
results_dict["saliency_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["saliency_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy())
results_dict["saliency_sens"] = sens
### InputXGradient
input_x_gradient = InputXGradient(super_pixel_model)
attributions = input_x_gradient.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["inpxgrad_acc"] = n_correct
results_dict["inpxgrad_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["inpxgrad_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy())
results_dict["inpxgrad_sens"] = sens
### GuidedBackprop
gbp = GuidedBackprop(super_pixel_model)
attributions = gbp.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["guidedbp_acc"] = n_correct
results_dict["guidedbp_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["guidedbp_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy())
results_dict["guidedbp_sens"] = sens
### Deconvolution
deconv = Deconvolution(super_pixel_model)
attributions = deconv.attribute(input, target=0)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_deconv.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["deconv_acc"] = n_correct
results_dict["deconv_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["deconv_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy())
results_dict["deconv_sens"] = sens
### Feature ablator
ablator = FeatureAblation(super_pixel_model)
attributions = ablator.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_featablt.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["featablt_acc"] = n_correct
results_dict["featablt_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["featablt_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy())
results_dict["featablt_sens"] = sens
### Shapley Value Sampling
svs = ShapleyValueSampling(super_pixel_model)
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_shapley.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["shapley_acc"] = n_correct
results_dict["shapley_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["shapley_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict["shapley_sens"] = sens
## LIME
interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
lime = Lime(super_pixel_model, interpretable_model=interpretable_model)
attributions = lime.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_lime.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["lime_acc"] = n_correct
results_dict["lime_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["lime_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy())
results_dict["lime_sens"] = sens
### KernelSHAP
ks = KernelShap(super_pixel_model)
attributions = ks.attribute(input, target=0, feature_mask=segmTensor)
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
results_dict["kernelshap_acc"] = n_correct
results_dict["kernelshap_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
results_dict["kernelshap_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy())
results_dict["kernelshap_sens"] = sens
# Other data
results_dict["testImgCount"] = testImgCount # 0 to N-1
selectivity_eval_results.append(results_dict)
with open(outputSelectivityPkl, 'wb') as f:
pickle.dump(selectivity_eval_results, f)
testImgCount += 1
print("testImgCount: ", testImgCount)
except:
print("An exception occurred1")
del valid_ds
valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
bestAttributionKeyStr = acquire_bestacc_attr(config, outputSelectivityPkl)
bestAttrName = bestAttributionKeyStr.split('_')[0]
### Run another forloop
testImgCount = 0
if resumePkl2 != "":
with open(resumePkl2, 'rb') as filePkl:
selectivity_eval_results = pickle.load(filePkl)
for h in range(1, len(selectivity_eval_results)):
if "testImgCount2" in selectivity_eval_results[-h]:
testImgCount = selectivity_eval_results[-h]["testImgCount2"] # ResumeCount
break
try:
for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
if i <= testImgCount:
continue
orig_img_tensors = orig_img_tensors.unsqueeze(0)
results_dict = {}
with open(segmRootDir + "{}.pkl".format(i), 'rb') as f:
pklData = pickle.load(f)
# segmData, labels = segAndLabels[0]
segmDataNP = pklData["segdata"]
labels = labels.lower() # For fair evaluation for all
assert pklData['label'] == labels
# labels = "lama0"
target = converter.encode([labels], len(config.character))
target = target[0] + 1 # Idx predicted by ABINET is 1 to N chars, not 0 to N-1
target[target > 36] = 0 # Remove EOS predictions, set endpoint chars to 0
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
segmTensor = segmTensor.to(device)
# print("segmTensor shape: ", segmTensor.shape)
# img1 = np.asarray(imgPIL.convert('L'))
# sys.exit()
# img1 = img1 / 255.0
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
img1 = orig_img_tensors.to(device)
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
## Required preprocessing for MATRN
mean = torch.tensor([0.485, 0.456, 0.406])
std = torch.tensor([0.229, 0.224, 0.225])
img1 = (img1-mean[...,None,None]) / std[...,None,None]
# preds = model(img1, seqlen=converter.batch_max_length)
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
charOffset = 0
### Local explanations only
collectedAttributions = []
for charIdx in range(0, len(labels)):
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
# print("charIdx + charOffset: ", charIdx + charOffset)
# print("target[0]: ", target[0])
gtClassNum = target[0][charIdx + charOffset]
### Gradient SHAP using zero-background
# gs = GradientShap(super_pixel_model_singlechar)
# baseline_dist = torch.zeros((1, 3, height, width))
# baseline_dist = baseline_dist.to(device)
# attributions = gs.attribute(input, baselines=baseline_dist, target=gtClassNum)
attributions = acquireAttribution(config, super_pixel_model_singlechar, \
input, segmTensor, gtClassNum, bestAttributionKeyStr, device)
collectedAttributions.append(attributions)
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_{}_l.png'.format(i, bestAttrName))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_l.pkl', aveAttributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, charset, labels, scoring_singlechar)
results_dict[f"{bestAttrName}_local_acc"] = n_correct
results_dict[f"{bestAttrName}_local_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions, normalize=True).detach().cpu().numpy())
results_dict[f"{bestAttrName}_local_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict[f"{bestAttrName}_local_sens"] = sens
### Best attribution-based method using zero-background
attributions = acquireAttribution(config, super_pixel_model, \
input, segmTensor, 0, bestAttributionKeyStr, device)
collectedAttributions.append(attributions)
### Global + Local context
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
mplotfig.savefig(outputDir + '{}_{}_gl.png'.format(i, bestAttrName))
mplotfig.clear()
plt.close(mplotfig)
saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_gl.pkl', aveAttributions, segmDataNP, origImgNP)
if acquireSelectivity:
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, charset, labels, scoring_singlechar)
results_dict[f"{bestAttrName}_global_local_acc"] = n_correct
results_dict[f"{bestAttrName}_global_local_conf"] = confidenceList
if acquireInfidelity:
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
results_dict[f"{bestAttrName}_global_local_infid"] = infid
if acquireSensitivity:
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
results_dict[f"{bestAttrName}_global_local_sens"] = sens
results_dict["testImgCount2"] = testImgCount # 0 to N-1
selectivity_eval_results.append(results_dict)
with open(outputSelectivityPkl, 'wb') as f:
pickle.dump(selectivity_eval_results, f)
testImgCount += 1
print("testImgCount GlobLoc: ", testImgCount)
except:
print("An exception occurred2")
### Use to check if the model predicted the image or not. Output a pickle file with the image index.
def modelDatasetPredOnly(opt):
# 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
# 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
datasetName = "IIIT5k_3000"
outputSelectivityPkl = "metrics_predictonly_eval_results_{}.pkl".format(datasetName)
charset = CharsetMapper(filename=config.dataset_charset_path,
max_length=config.dataset_max_length + 1)
model = get_model(config).to(device)
model = load(model, config.model_checkpoint, device=device)
model.eval()
strict = ifnone(config.model_strict, True)
### Dataset not shuffled because it is not a dataloader, just a dataset
valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
# print("valid_ds: ", len(valid_ds[0]))
testImgCount = 0
predOutput = []
for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
orig_img_tensors = orig_img_tensors.unsqueeze(0).to(device)
modelOut = model(orig_img_tensors) ### Returns a tuple of dictionaries
pred, _, __ = postprocess(modelOut[0], charset, config.model_eval)
pred = pred[0] # outputs a list, so query [0]
if pred.lower() == labels.lower(): predOutput.append(1)
else: predOutput.append(0)
with open(outputSelectivityPkl, 'wb') as f:
pickle.dump(predOutput, f)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/train_matrn.yaml',
help='path to config file')
parser.add_argument('--input', type=str, default='figs/test')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=128, help='the width of the input image')
parser.add_argument('--scorer', type=str, default='mean', help='See STRScore: cumprod | mean')
parser.add_argument('--blackbg', action='store_true', default=None)
parser.add_argument('--cuda', type=int, default=-1)
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--checkpoint', type=str, default='workdir/train-abinet/best-train-abinet.pth')
parser.add_argument('--model_eval', type=str, default='alignment',
choices=['alignment', 'vision', 'language'])
args = parser.parse_args()
config = Config(args.config)
if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
if args.model_eval is not None: config.model_eval = args.model_eval
if args.imgH is not None: config.imgH = args.imgH
if args.imgW is not None: config.imgW = args.imgW
if args.scorer is not None: config.scorer = args.scorer
if args.blackbg is not None: config.blackbg = args.blackbg
if args.rgb is not None: config.rgb = args.rgb
config.global_phase = 'test'
config.model_vision_checkpoint, config.model_language_checkpoint = None, None
device = 'cpu' if args.cuda < 0 else f'cuda:{args.cuda}'
Logger.init(config.global_workdir, config.global_name, config.global_phase)
Logger.enable_file()
logging.info(config)
# acquire_average_auc(config)
main(config)
# modelDatasetPredOnly(config)