strexp / imagenet_c /__init__.py
markytools's picture
added strexp
d61b9c7
raw
history blame
1.83 kB
import numpy as np
from PIL import Image
from .corruptions import *
corruption_tuple = (gaussian_noise, shot_noise, impulse_noise, defocus_blur,
glass_blur, motion_blur, zoom_blur, snow, frost, fog,
brightness, contrast, elastic_transform, pixelate, jpeg_compression,
speckle_noise, gaussian_blur, spatter, saturate)
corruption_dict = {corr_func.__name__: corr_func for corr_func in corruption_tuple}
def corrupt(x, severity=1, corruption_name=None, corruption_number=-1):
"""
:param x: image to corrupt; a 224x224x3 numpy array in [0, 255]
:param severity: strength with which to corrupt x; an integer in (0, 5]
:param corruption_name: specifies which corruption function to call;
must be one of 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur',
'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog',
'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression',
'speckle_noise', 'gaussian_blur', 'spatter', 'saturate';
the last four are validation functions
:param corruption_number: the position of the corruption_name in the above list;
an integer in [0, 18]; useful for easy looping; 15, 16, 17, 18 are validation corruption numbers
:return: the image x corrupted by a corruption function at the given severity; same shape as input
"""
if corruption_name:
x_corrupted = corruption_dict[corruption_name](Image.fromarray(x), severity)
elif corruption_number != -1:
x_corrupted = corruption_tuple[corruption_number](Image.fromarray(x), severity)
else:
raise ValueError("Either corruption_name or corruption_number must be passed")
return np.uint8(x_corrupted)