Spaces:
Build error
Build error
#Ranger deep learning optimizer - RAdam + Lookahead combined. | |
#https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer | |
import math | |
import torch | |
from torch.optim.optimizer import Optimizer, required | |
import itertools as it | |
#from torch.optim import Optimizer | |
#credit - Lookahead implementation from LonePatient - https://github.com/lonePatient/lookahead_pytorch/blob/master/optimizer.py | |
#credit2 - RAdam code by https://github.com/LiyuanLucasLiu/RAdam/blob/master/radam.py | |
#changes 8/31/19 - fix references to *self*.N_sma_threshold; | |
#changed eps to 1e-5 as better default than 1e-8. | |
class Ranger(Optimizer): | |
def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(.95,0.999), eps=1e-5, weight_decay=0): | |
#parameter checks | |
if not 0.0 <= alpha <= 1.0: | |
raise ValueError(f'Invalid slow update rate: {alpha}') | |
if not 1 <= k: | |
raise ValueError(f'Invalid lookahead steps: {k}') | |
if not lr > 0: | |
raise ValueError(f'Invalid Learning Rate: {lr}') | |
if not eps > 0: | |
raise ValueError(f'Invalid eps: {eps}') | |
#parameter comments: | |
# beta1 (momentum) of .95 seems to work better than .90... | |
#N_sma_threshold of 5 seems better in testing than 4. | |
#In both cases, worth testing on your dataset (.90 vs .95, 4 vs 5) to make sure which works best for you. | |
#prep defaults and init torch.optim base | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
super().__init__(params,defaults) | |
#adjustable threshold | |
self.N_sma_threshhold = N_sma_threshhold | |
#now we can get to work... | |
for group in self.param_groups: | |
group["step_counter"] = 0 | |
#print("group step counter init") | |
#look ahead params | |
self.alpha = alpha | |
self.k = k | |
#radam buffer for state | |
self.radam_buffer = [[None,None,None] for ind in range(10)] | |
#lookahead weights | |
self.slow_weights = [[p.clone().detach() for p in group['params']] | |
for group in self.param_groups] | |
#don't use grad for lookahead weights | |
for w in it.chain(*self.slow_weights): | |
w.requires_grad = False | |
def __setstate__(self, state): | |
print("set state called") | |
super(Ranger, self).__setstate__(state) | |
def step(self, closure=None): | |
loss = None | |
#note - below is commented out b/c I have other work that passes back the loss as a float, and thus not a callable closure. | |
#Uncomment if you need to use the actual closure... | |
#if closure is not None: | |
#loss = closure() | |
#------------ radam | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data.float() | |
if grad.is_sparse: | |
raise RuntimeError('RAdam does not support sparse gradients') | |
p_data_fp32 = p.data.float() | |
state = self.state[p] | |
if len(state) == 0: | |
state['step'] = 0 | |
state['exp_avg'] = torch.zeros_like(p_data_fp32) | |
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) | |
else: | |
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) | |
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) | |
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
beta1, beta2 = group['betas'] | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
exp_avg.mul_(beta1).add_(1 - beta1, grad) | |
state['step'] += 1 | |
buffered = self.radam_buffer[int(state['step'] % 10)] | |
if state['step'] == buffered[0]: | |
N_sma, step_size = buffered[1], buffered[2] | |
else: | |
buffered[0] = state['step'] | |
beta2_t = beta2 ** state['step'] | |
N_sma_max = 2 / (1 - beta2) - 1 | |
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) | |
buffered[1] = N_sma | |
if N_sma > self.N_sma_threshhold: | |
step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) | |
else: | |
step_size = 1.0 / (1 - beta1 ** state['step']) | |
buffered[2] = step_size | |
if group['weight_decay'] != 0: | |
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) | |
if N_sma > self.N_sma_threshhold: | |
denom = exp_avg_sq.sqrt().add_(group['eps']) | |
p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) | |
else: | |
p_data_fp32.add_(-step_size * group['lr'], exp_avg) | |
p.data.copy_(p_data_fp32) | |
#---------------- end radam step | |
#look ahead tracking and updating if latest batch = k | |
for group,slow_weights in zip(self.param_groups,self.slow_weights): | |
group['step_counter'] += 1 | |
if group['step_counter'] % self.k != 0: | |
continue | |
for p,q in zip(group['params'],slow_weights): | |
if p.grad is None: | |
continue | |
q.data.add_(self.alpha,p.data - q.data) | |
p.data.copy_(q.data) | |
return loss |