Spaces:
Build error
Build error
import torch | |
from torch import nn | |
from .model_alignment import BaseAlignment | |
from .model_language import BCNLanguage | |
from .model_vision import BaseVision | |
class ABINetIterModel(nn.Module): | |
def __init__(self, dataset_max_length, null_label, num_classes, iter_size=1, | |
d_model=512, nhead=8, d_inner=2048, dropout=0.1, activation='relu', | |
v_loss_weight=1., v_attention='position', v_attention_mode='nearest', | |
v_backbone='transformer', v_num_layers=2, | |
l_loss_weight=1., l_num_layers=4, l_detach=True, l_use_self_attn=False, | |
a_loss_weight=1.): | |
super().__init__() | |
self.iter_size = iter_size | |
self.vision = BaseVision(dataset_max_length, null_label, num_classes, v_attention, v_attention_mode, | |
v_loss_weight, d_model, nhead, d_inner, dropout, activation, v_backbone, v_num_layers) | |
self.language = BCNLanguage(dataset_max_length, null_label, num_classes, d_model, nhead, d_inner, dropout, | |
activation, l_num_layers, l_detach, l_use_self_attn, l_loss_weight) | |
self.alignment = BaseAlignment(dataset_max_length, null_label, num_classes, d_model, a_loss_weight) | |
def forward(self, images): | |
v_res = self.vision(images) | |
a_res = v_res | |
all_l_res, all_a_res = [], [] | |
for _ in range(self.iter_size): | |
tokens = torch.softmax(a_res['logits'], dim=-1) | |
lengths = a_res['pt_lengths'] | |
lengths.clamp_(2, self.language.max_length) # TODO:move to langauge model | |
l_res = self.language(tokens, lengths) | |
all_l_res.append(l_res) | |
a_res = self.alignment(l_res['feature'], v_res['feature']) | |
all_a_res.append(a_res) | |
if self.training: | |
return all_a_res, all_l_res, v_res | |
else: | |
return a_res, all_l_res[-1], v_res | |