Spaces:
Build error
Build error
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from torch.nn.modules.transformer import _get_activation_fn | |
class TransformerDecoderLayer(nn.Module): | |
r"""TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. | |
This standard decoder layer is based on the paper "Attention Is All You Need". | |
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, | |
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in | |
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement | |
in a different way during application. | |
Args: | |
d_model: the number of expected features in the input (required). | |
nhead: the number of heads in the multiheadattention models (required). | |
dim_feedforward: the dimension of the feedforward network model (default=2048). | |
dropout: the dropout value (default=0.1). | |
activation: the activation function of intermediate layer, relu or gelu (default=relu). | |
Examples:: | |
>>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) | |
>>> memory = torch.rand(10, 32, 512) | |
>>> tgt = torch.rand(20, 32, 512) | |
>>> out = decoder_layer(tgt, memory) | |
""" | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, | |
activation="relu", self_attn=True, siamese=False, debug=False): | |
super().__init__() | |
self.has_self_attn, self.siamese = self_attn, siamese | |
self.debug = debug | |
if self.has_self_attn: | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
if self.siamese: | |
self.multihead_attn2 = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.activation = _get_activation_fn(activation) | |
def __setstate__(self, state): | |
if 'activation' not in state: | |
state['activation'] = F.relu | |
super().__setstate__(state) | |
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, | |
tgt_key_padding_mask=None, memory_key_padding_mask=None, | |
memory2=None, memory_mask2=None, memory_key_padding_mask2=None): | |
# type: (Tensor, Tensor, Optional[Tensor], Optional[Tensor], Optional[Tensor], Optional[Tensor]) -> Tensor | |
r"""Pass the inputs (and mask) through the decoder layer. | |
Args: | |
tgt: the sequence to the decoder layer (required). | |
memory: the sequence from the last layer of the encoder (required). | |
tgt_mask: the mask for the tgt sequence (optional). | |
memory_mask: the mask for the memory sequence (optional). | |
tgt_key_padding_mask: the mask for the tgt keys per batch (optional). | |
memory_key_padding_mask: the mask for the memory keys per batch (optional). | |
Shape: | |
see the docs in Transformer class. | |
""" | |
if self.has_self_attn: | |
tgt2, attn = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask) | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
if self.debug: self.attn = attn | |
tgt2, attn2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask) | |
if self.debug: self.attn2 = attn2 | |
if self.siamese: | |
tgt3, attn3 = self.multihead_attn2(tgt, memory2, memory2, attn_mask=memory_mask2, | |
key_padding_mask=memory_key_padding_mask2) | |
tgt = tgt + self.dropout2(tgt3) | |
if self.debug: self.attn3 = attn3 | |
tgt = tgt + self.dropout2(tgt2) | |
tgt = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
class PositionalEncoding(nn.Module): | |
r"""Inject some information about the relative or absolute position of the tokens | |
in the sequence. The positional encodings have the same dimension as | |
the embeddings, so that the two can be summed. Here, we use sine and cosine | |
functions of different frequencies. | |
.. math:: | |
\text{PosEncoder}(pos, 2i) = sin(pos/10000^(2i/d_model)) | |
\text{PosEncoder}(pos, 2i+1) = cos(pos/10000^(2i/d_model)) | |
\text{where pos is the word position and i is the embed idx) | |
Args: | |
d_model: the embed dim (required). | |
dropout: the dropout value (default=0.1). | |
max_len: the max. length of the incoming sequence (default=5000). | |
Examples: | |
>>> pos_encoder = PositionalEncoding(d_model) | |
""" | |
def __init__(self, d_model, dropout=0.1, max_len=5000): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
pe = torch.zeros(max_len, d_model) | |
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0).transpose(0, 1) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
r"""Inputs of forward function | |
Args: | |
x: the sequence fed to the positional encoder model (required). | |
Shape: | |
x: [sequence length, batch size, embed dim] | |
output: [sequence length, batch size, embed dim] | |
Examples: | |
>>> output = pos_encoder(x) | |
""" | |
x = x + self.pe[:x.size(0), :] | |
return self.dropout(x) | |