Spaces:
Build error
Build error
# Scene Text Recognition Model Hub | |
# Copyright 2022 Darwin Bautista | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from typing import Optional | |
import torch | |
from torch import nn as nn, Tensor | |
from torch.nn import functional as F | |
from torch.nn.modules import transformer | |
from timm.models.vision_transformer import VisionTransformer, PatchEmbed | |
class DecoderLayer(nn.Module): | |
"""A Transformer decoder layer supporting two-stream attention (XLNet) | |
This implements a pre-LN decoder, as opposed to the post-LN default in PyTorch.""" | |
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='gelu', | |
layer_norm_eps=1e-5): | |
super().__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True) | |
self.cross_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) | |
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) | |
self.norm_q = nn.LayerNorm(d_model, eps=layer_norm_eps) | |
self.norm_c = nn.LayerNorm(d_model, eps=layer_norm_eps) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = transformer._get_activation_fn(activation) | |
def __setstate__(self, state): | |
if 'activation' not in state: | |
state['activation'] = F.gelu | |
super().__setstate__(state) | |
def forward_stream(self, tgt: Tensor, tgt_norm: Tensor, tgt_kv: Tensor, memory: Tensor, tgt_mask: Optional[Tensor], | |
tgt_key_padding_mask: Optional[Tensor]): | |
"""Forward pass for a single stream (i.e. content or query) | |
tgt_norm is just a LayerNorm'd tgt. Added as a separate parameter for efficiency. | |
Both tgt_kv and memory are expected to be LayerNorm'd too. | |
memory is LayerNorm'd by ViT. | |
""" | |
tgt2, sa_weights = self.self_attn(tgt_norm, tgt_kv, tgt_kv, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask) | |
tgt = tgt + self.dropout1(tgt2) | |
tgt2, ca_weights = self.cross_attn(self.norm1(tgt), memory, memory) | |
tgt = tgt + self.dropout2(tgt2) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(self.norm2(tgt))))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt, sa_weights, ca_weights | |
def forward(self, query, content, memory, query_mask: Optional[Tensor] = None, content_mask: Optional[Tensor] = None, | |
content_key_padding_mask: Optional[Tensor] = None, update_content: bool = True): | |
query_norm = self.norm_q(query) | |
content_norm = self.norm_c(content) | |
query = self.forward_stream(query, query_norm, content_norm, memory, query_mask, content_key_padding_mask)[0] | |
if update_content: | |
content = self.forward_stream(content, content_norm, content_norm, memory, content_mask, | |
content_key_padding_mask)[0] | |
return query, content | |
class Decoder(nn.Module): | |
__constants__ = ['norm'] | |
def __init__(self, decoder_layer, num_layers, norm): | |
super().__init__() | |
self.layers = transformer._get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, query, content, memory, query_mask: Optional[Tensor] = None, content_mask: Optional[Tensor] = None, | |
content_key_padding_mask: Optional[Tensor] = None): | |
for i, mod in enumerate(self.layers): | |
last = i == len(self.layers) - 1 | |
query, content = mod(query, content, memory, query_mask, content_mask, content_key_padding_mask, | |
update_content=not last) | |
query = self.norm(query) | |
return query | |
class Encoder(VisionTransformer): | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., | |
qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed): | |
super().__init__(img_size, patch_size, in_chans, embed_dim=embed_dim, depth=depth, num_heads=num_heads, | |
mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, | |
drop_path_rate=drop_path_rate, embed_layer=embed_layer, | |
num_classes=0, global_pool='', class_token=False) # these disable the classifier head | |
def forward(self, x): | |
# Return all tokens | |
return self.forward_features(x) | |
class TokenEmbedding(nn.Module): | |
def __init__(self, charset_size: int, embed_dim: int): | |
super().__init__() | |
self.embedding = nn.Embedding(charset_size, embed_dim) | |
self.embed_dim = embed_dim | |
def forward(self, tokens: torch.Tensor): | |
return math.sqrt(self.embed_dim) * self.embedding(tokens) | |