Spaces:
Build error
Build error
import streamlit as st | |
from PIL import Image | |
import settings | |
import captum | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.backends.cudnn as cudnn | |
from utils import get_args | |
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter | |
import string | |
import time | |
import sys | |
from dataset import hierarchical_dataset, AlignCollate | |
import validators | |
from model import Model, STRScore | |
from PIL import Image | |
from lime.wrappers.scikit_image import SegmentationAlgorithm | |
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge | |
import random | |
import os | |
from skimage.color import gray2rgb | |
import pickle | |
from train_shap_corr import getPredAndConf | |
import re | |
from captum_test import acquire_average_auc, saveAttrData | |
import copy | |
from skimage.color import gray2rgb | |
from matplotlib import pyplot as plt | |
from torchvision import transforms | |
from captum.attr import ( | |
GradientShap, | |
DeepLift, | |
DeepLiftShap, | |
IntegratedGradients, | |
LayerConductance, | |
NeuronConductance, | |
NoiseTunnel, | |
Saliency, | |
InputXGradient, | |
GuidedBackprop, | |
Deconvolution, | |
GuidedGradCam, | |
FeatureAblation, | |
ShapleyValueSampling, | |
Lime, | |
KernelShap | |
) | |
from captum.metrics import ( | |
infidelity, | |
sensitivity_max | |
) | |
from captum.attr._utils.visualization import visualize_image_attr | |
device = torch.device('cpu') | |
opt = get_args(is_train=False) | |
if opt.sensitive: | |
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). | |
cudnn.benchmark = True | |
cudnn.deterministic = True | |
# opt.num_gpu = torch.cuda.device_count() | |
# combineBestDataXAI(opt) | |
# acquire_average_auc(opt) | |
# acquireSingleCharAttrAve(opt) | |
modelName = "parseq" | |
opt.modelName = modelName | |
# opt.eval_data = "datasets/data_lmdb_release/evaluation" | |
if modelName=="vitstr": | |
opt.benchmark_all_eval = True | |
opt.Transformation = "None" | |
opt.FeatureExtraction = "None" | |
opt.SequenceModeling = "None" | |
opt.Prediction = "None" | |
opt.Transformer = True | |
opt.sensitive = True | |
opt.imgH = 224 | |
opt.imgW = 224 | |
opt.data_filtering_off = True | |
opt.TransformerModel= "vitstr_base_patch16_224" | |
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth" | |
opt.batch_size = 1 | |
opt.workers = 0 | |
opt.scorer = "mean" | |
opt.blackbg = True | |
elif modelName=="parseq": | |
opt.benchmark_all_eval = True | |
opt.Transformation = "None" | |
opt.FeatureExtraction = "None" | |
opt.SequenceModeling = "None" | |
opt.Prediction = "None" | |
opt.Transformer = True | |
opt.sensitive = True | |
opt.imgH = 32 | |
opt.imgW = 128 | |
opt.data_filtering_off = True | |
opt.batch_size = 1 | |
opt.workers = 0 | |
opt.scorer = "mean" | |
opt.blackbg = True | |
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
max_dist=200, ratio=0.2, | |
random_seed=random.randint(0, 1000)) | |
if modelName=="vitstr": | |
if opt.Transformer: | |
converter = TokenLabelConverter(opt) | |
elif 'CTC' in opt.Prediction: | |
converter = CTCLabelConverter(opt.character) | |
else: | |
converter = AttnLabelConverter(opt.character) | |
opt.num_class = len(converter.character) | |
if opt.rgb: | |
opt.input_channel = 3 | |
model_obj = Model(opt) | |
model = torch.nn.DataParallel(model_obj).to(device) | |
modelCopy = copy.deepcopy(model) | |
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True) | |
super_pixel_model_singlechar = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
modelCopy, | |
scoring_singlechar | |
).to(device) | |
modelCopy.eval() | |
scoring_singlechar.eval() | |
super_pixel_model_singlechar.eval() | |
# Single Char Attribution Averaging | |
# enableSingleCharAttrAve - set to True | |
scoring = STRScore(opt=opt, converter=converter, device=device) | |
super_pixel_model = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
model, | |
scoring | |
).to(device) | |
model.eval() | |
scoring.eval() | |
super_pixel_model.eval() | |
elif modelName=="parseq": | |
model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True) | |
# checkpoint = torch.hub.load_state_dict_from_url('https://github.com/baudm/parseq/releases/download/v1.0.0/parseq-bb5792a6.pt', map_location="cpu") | |
# # state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()} | |
# model.load_state_dict(checkpoint) | |
model = model.to(device) | |
model_obj = model | |
converter = TokenLabelConverter(opt) | |
modelCopy = copy.deepcopy(model) | |
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy) | |
super_pixel_model_singlechar = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
modelCopy, | |
scoring_singlechar | |
).to(device) | |
modelCopy.eval() | |
scoring_singlechar.eval() | |
super_pixel_model_singlechar.eval() | |
# Single Char Attribution Averaging | |
# enableSingleCharAttrAve - set to True | |
scoring = STRScore(opt=opt, converter=converter, device=device, model=model) | |
super_pixel_model = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
model, | |
scoring | |
).to(device) | |
model.eval() | |
scoring.eval() | |
super_pixel_model.eval() | |
if opt.blackbg: | |
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32) | |
trainList = np.array(shapImgLs) | |
background = torch.from_numpy(trainList).to(device) | |
# x = st.slider('Select a value') | |
# st.write(x, 'squared is', x * x) | |
### Returns the mean for each segmentation having shape as the same as the input | |
### This function can only one attribution image at a time | |
def averageSegmentsOut(attr, segments): | |
averagedInput = torch.clone(attr) | |
sortedDict = {} | |
for x in np.unique(segments): | |
segmentMean = torch.mean(attr[segments == x][:]) | |
sortedDict[x] = float(segmentMean.detach().cpu().numpy()) | |
averagedInput[segments == x] = segmentMean | |
return averagedInput, sortedDict | |
### Acquire pixelwise attributions and replace them with ranked numbers averaged | |
### across segmentation with the largest contribution having the largest number | |
### and the smallest set to 1, which is the minimum number. | |
### attr - original attribution | |
### segm - image segmentations | |
def rankedAttributionsBySegm(attr, segm): | |
aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm) | |
totalSegm = len(sortedDict.keys()) # total segmentations | |
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])] | |
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score | |
currentRank = totalSegm | |
rankedSegmImg = torch.clone(attr) | |
for totalSegToHide in range(0, len(sortedKeys)): | |
currentSegmentToHide = sortedKeys[totalSegToHide] | |
rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank | |
currentRank -= 1 | |
return rankedSegmImg | |
labels = st.text_input('Drag one of the images from the right towards the box below (or you can choose your own image). ' | |
'You need to put the text of the image in the textbox below first (e.g. GAS) before dragging the image.') | |
image = Image.open('demo_image/demo_gas.jpg') #Brand logo image (optional) | |
image2 = Image.open('demo_image/demo_shakeshack.jpg') #Brand logo image (optional) | |
image3 = Image.open('demo_image/demo_ronaldo.jpg') #Brand logo image (optional) | |
image4 = Image.open('demo_image/demo_car.jpg') #Brand logo image (optional) | |
#Create two columns with different width | |
col1, col2 = st.columns( [0.8, 0.2]) | |
with col1: # To display the header text using css style | |
st.markdown(""" <style> .font { | |
font-size:35px ; font-family: 'Cooper Black'; color: #FF9633;} | |
</style> """, unsafe_allow_html=True) | |
st.markdown('<p class="font">STRExp (Explaining PARSeq STR Model)...</p>', unsafe_allow_html=True) | |
with col2: # To display brand logo | |
st.image(image, width=150) | |
st.image(image2, width=150) | |
st.image(image3, width=150) | |
st.image(image4, width=150) | |
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"]) | |
if uploaded_file is not None: | |
# To read file as bytes: | |
bytes_data = uploaded_file.getvalue() | |
pilImg = Image.open(uploaded_file) | |
pilImg = pilImg.resize((opt.imgW, opt.imgH)) | |
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0) | |
img1 = orig_img_tensors.to(device) | |
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0 | |
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0) | |
imgDataDict = {} | |
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
if img_numpy.shape[0] == 1: | |
img_numpy = gray2rgb(img_numpy[0]) | |
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3) | |
segmOutput = segmentation_fn(img_numpy[0]) | |
results_dict = {} | |
aveAttr = [] | |
aveAttr_charContrib = [] | |
# labels: RONALDO | |
segmDataNP = segmOutput | |
img1.requires_grad = True | |
bgImg = torch.zeros(img1.shape).to(device) | |
# preds = model(img1, seqlen=converter.batch_max_length) | |
input = img1 | |
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
origImgNP = gray2rgb(origImgNP) | |
charOffset = 0 | |
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1 | |
labels = labels.lower() | |
target = converter.encode([labels]) | |
### Local explanations only | |
collectedAttributions = [] | |
for charIdx in range(0, len(labels)): | |
scoring_singlechar.setSingleCharOutput(charIdx + charOffset) | |
gtClassNum = target[0][charIdx + charOffset] | |
gs = GradientShap(super_pixel_model_singlechar) | |
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW)) | |
baseline_dist = baseline_dist.to(device) | |
attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
collectedAttributions.append(attributions) | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
# if not torch.isnan(aveAttributions).any(): | |
# rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
# rankedAttr = gray2rgb(rankedAttr) | |
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
# mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt)) | |
# mplotfig.clear() | |
# plt.close(mplotfig) | |
### Local Sampling | |
gs = GradientShap(super_pixel_model) | |
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW)) | |
baseline_dist = baseline_dist.to(device) | |
attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
# if not torch.isnan(attributions).any(): | |
# collectedAttributions.append(attributions) | |
# rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
# rankedAttr = gray2rgb(rankedAttr) | |
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
# mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt)) | |
# mplotfig.clear() | |
# plt.close(mplotfig) | |
### Global + Local context | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
if not torch.isnan(aveAttributions).any(): | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
# fig = mplotfig.figure(figsize=(8,8)) | |
st.pyplot(mplotfig) | |
# mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt)) | |
# mplotfig.clear() | |
# plt.close(mplotfig) | |