strexp / app.py
markytools's picture
added new imgs
2fbee6c
import streamlit as st
from PIL import Image
import settings
import captum
import numpy as np
import torch
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from utils import get_args
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
import string
import time
import sys
from dataset import hierarchical_dataset, AlignCollate
import validators
from model import Model, STRScore
from PIL import Image
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
import random
import os
from skimage.color import gray2rgb
import pickle
from train_shap_corr import getPredAndConf
import re
from captum_test import acquire_average_auc, saveAttrData
import copy
from skimage.color import gray2rgb
from matplotlib import pyplot as plt
from torchvision import transforms
from captum.attr import (
GradientShap,
DeepLift,
DeepLiftShap,
IntegratedGradients,
LayerConductance,
NeuronConductance,
NoiseTunnel,
Saliency,
InputXGradient,
GuidedBackprop,
Deconvolution,
GuidedGradCam,
FeatureAblation,
ShapleyValueSampling,
Lime,
KernelShap
)
from captum.metrics import (
infidelity,
sensitivity_max
)
from captum.attr._utils.visualization import visualize_image_attr
device = torch.device('cpu')
opt = get_args(is_train=False)
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
# opt.num_gpu = torch.cuda.device_count()
# combineBestDataXAI(opt)
# acquire_average_auc(opt)
# acquireSingleCharAttrAve(opt)
modelName = "parseq"
opt.modelName = modelName
# opt.eval_data = "datasets/data_lmdb_release/evaluation"
if modelName=="vitstr":
opt.benchmark_all_eval = True
opt.Transformation = "None"
opt.FeatureExtraction = "None"
opt.SequenceModeling = "None"
opt.Prediction = "None"
opt.Transformer = True
opt.sensitive = True
opt.imgH = 224
opt.imgW = 224
opt.data_filtering_off = True
opt.TransformerModel= "vitstr_base_patch16_224"
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth"
opt.batch_size = 1
opt.workers = 0
opt.scorer = "mean"
opt.blackbg = True
elif modelName=="parseq":
opt.benchmark_all_eval = True
opt.Transformation = "None"
opt.FeatureExtraction = "None"
opt.SequenceModeling = "None"
opt.Prediction = "None"
opt.Transformer = True
opt.sensitive = True
opt.imgH = 32
opt.imgW = 128
opt.data_filtering_off = True
opt.batch_size = 1
opt.workers = 0
opt.scorer = "mean"
opt.blackbg = True
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random.randint(0, 1000))
if modelName=="vitstr":
if opt.Transformer:
converter = TokenLabelConverter(opt)
elif 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
if opt.rgb:
opt.input_channel = 3
model_obj = Model(opt)
model = torch.nn.DataParallel(model_obj).to(device)
modelCopy = copy.deepcopy(model)
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True)
super_pixel_model_singlechar = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
modelCopy,
scoring_singlechar
).to(device)
modelCopy.eval()
scoring_singlechar.eval()
super_pixel_model_singlechar.eval()
# Single Char Attribution Averaging
# enableSingleCharAttrAve - set to True
scoring = STRScore(opt=opt, converter=converter, device=device)
super_pixel_model = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
model,
scoring
).to(device)
model.eval()
scoring.eval()
super_pixel_model.eval()
elif modelName=="parseq":
model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True)
# checkpoint = torch.hub.load_state_dict_from_url('https://github.com/baudm/parseq/releases/download/v1.0.0/parseq-bb5792a6.pt', map_location="cpu")
# # state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
# model.load_state_dict(checkpoint)
model = model.to(device)
model_obj = model
converter = TokenLabelConverter(opt)
modelCopy = copy.deepcopy(model)
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy)
super_pixel_model_singlechar = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
modelCopy,
scoring_singlechar
).to(device)
modelCopy.eval()
scoring_singlechar.eval()
super_pixel_model_singlechar.eval()
# Single Char Attribution Averaging
# enableSingleCharAttrAve - set to True
scoring = STRScore(opt=opt, converter=converter, device=device, model=model)
super_pixel_model = torch.nn.Sequential(
# super_pixler,
# numpy2torch_converter,
model,
scoring
).to(device)
model.eval()
scoring.eval()
super_pixel_model.eval()
if opt.blackbg:
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32)
trainList = np.array(shapImgLs)
background = torch.from_numpy(trainList).to(device)
# x = st.slider('Select a value')
# st.write(x, 'squared is', x * x)
### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
averagedInput = torch.clone(attr)
sortedDict = {}
for x in np.unique(segments):
segmentMean = torch.mean(attr[segments == x][:])
sortedDict[x] = float(segmentMean.detach().cpu().numpy())
averagedInput[segments == x] = segmentMean
return averagedInput, sortedDict
### Acquire pixelwise attributions and replace them with ranked numbers averaged
### across segmentation with the largest contribution having the largest number
### and the smallest set to 1, which is the minimum number.
### attr - original attribution
### segm - image segmentations
def rankedAttributionsBySegm(attr, segm):
aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm)
totalSegm = len(sortedDict.keys()) # total segmentations
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
currentRank = totalSegm
rankedSegmImg = torch.clone(attr)
for totalSegToHide in range(0, len(sortedKeys)):
currentSegmentToHide = sortedKeys[totalSegToHide]
rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank
currentRank -= 1
return rankedSegmImg
labels = st.text_input('Drag one of the images from the right towards the box below (or you can choose your own image). '
'You need to put the text of the image in the textbox below first (e.g. GAS) before dragging the image.')
image = Image.open('demo_image/demo_gas.jpg') #Brand logo image (optional)
image2 = Image.open('demo_image/demo_shakeshack.jpg') #Brand logo image (optional)
image3 = Image.open('demo_image/demo_ronaldo.jpg') #Brand logo image (optional)
image4 = Image.open('demo_image/demo_car.jpg') #Brand logo image (optional)
#Create two columns with different width
col1, col2 = st.columns( [0.8, 0.2])
with col1: # To display the header text using css style
st.markdown(""" <style> .font {
font-size:35px ; font-family: 'Cooper Black'; color: #FF9633;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">STRExp (Explaining PARSeq STR Model)...</p>', unsafe_allow_html=True)
with col2: # To display brand logo
st.image(image, width=150)
st.image(image2, width=150)
st.image(image3, width=150)
st.image(image4, width=150)
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
if uploaded_file is not None:
# To read file as bytes:
bytes_data = uploaded_file.getvalue()
pilImg = Image.open(uploaded_file)
pilImg = pilImg.resize((opt.imgW, opt.imgH))
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0)
img1 = orig_img_tensors.to(device)
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0)
imgDataDict = {}
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
if img_numpy.shape[0] == 1:
img_numpy = gray2rgb(img_numpy[0])
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3)
segmOutput = segmentation_fn(img_numpy[0])
results_dict = {}
aveAttr = []
aveAttr_charContrib = []
# labels: RONALDO
segmDataNP = segmOutput
img1.requires_grad = True
bgImg = torch.zeros(img1.shape).to(device)
# preds = model(img1, seqlen=converter.batch_max_length)
input = img1
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
origImgNP = gray2rgb(origImgNP)
charOffset = 0
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
labels = labels.lower()
target = converter.encode([labels])
### Local explanations only
collectedAttributions = []
for charIdx in range(0, len(labels)):
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
gtClassNum = target[0][charIdx + charOffset]
gs = GradientShap(super_pixel_model_singlechar)
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
collectedAttributions.append(attributions)
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
# if not torch.isnan(aveAttributions).any():
# rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
# rankedAttr = gray2rgb(rankedAttr)
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
# mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
# mplotfig.clear()
# plt.close(mplotfig)
### Local Sampling
gs = GradientShap(super_pixel_model)
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
baseline_dist = baseline_dist.to(device)
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
# if not torch.isnan(attributions).any():
# collectedAttributions.append(attributions)
# rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
# rankedAttr = gray2rgb(rankedAttr)
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
# mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
# mplotfig.clear()
# plt.close(mplotfig)
### Global + Local context
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
if not torch.isnan(aveAttributions).any():
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
rankedAttr = gray2rgb(rankedAttr)
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
# fig = mplotfig.figure(figsize=(8,8))
st.pyplot(mplotfig)
# mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
# mplotfig.clear()
# plt.close(mplotfig)