Spaces:
Build error
Build error
import cv2 | |
import numpy as np | |
import math | |
from PIL import Image, ImageOps, ImageDraw | |
from skimage import color | |
from pkg_resources import resource_filename | |
from io import BytesIO | |
from .ops import plasma_fractal, clipped_zoom, MotionImage | |
''' | |
PIL resize (W,H) | |
''' | |
class Fog: | |
def __init__(self): | |
pass | |
def __call__(self, img, mag=-1, prob=1.): | |
if np.random.uniform(0,1) > prob: | |
return img | |
W, H = img.size | |
c = [(1.5, 2), (2., 2), (2.5, 1.7)] | |
if mag<0 or mag>=len(c): | |
index = np.random.randint(0, len(c)) | |
else: | |
index = mag | |
c = c[index] | |
n_channels = len(img.getbands()) | |
isgray = n_channels == 1 | |
img = np.array(img) / 255. | |
max_val = img.max() | |
fog = c[0] * plasma_fractal(wibbledecay=c[1])[:H, :W][..., np.newaxis] | |
#x += c[0] * plasma_fractal(wibbledecay=c[1])[:224, :224][..., np.newaxis] | |
#return np.clip(x * max_val / (max_val + c[0]), 0, 1) * 255 | |
if isgray: | |
fog = np.squeeze(fog) | |
else: | |
fog = np.repeat(fog, 3, axis=2) | |
img += fog | |
img = np.clip(img * max_val / (max_val + c[0]), 0, 1) * 255 | |
return Image.fromarray(img.astype(np.uint8)) | |
class Frost: | |
def __init__(self): | |
pass | |
def __call__(self, img, mag=-1, prob=1.): | |
if np.random.uniform(0,1) > prob: | |
return img | |
W, H = img.size | |
c = [(1, 0.4), (0.8, 0.6), (0.7, 0.7)] | |
if mag<0 or mag>=len(c): | |
index = np.random.randint(0, len(c)) | |
else: | |
index = mag | |
c = c[index] | |
filename = [resource_filename(__name__, 'frost/frost1.png'), | |
resource_filename(__name__, 'frost/frost2.png'), | |
resource_filename(__name__, 'frost/frost3.png'), | |
resource_filename(__name__, 'frost/frost4.jpg'), | |
resource_filename(__name__, 'frost/frost5.jpg'), | |
resource_filename(__name__, 'frost/frost6.jpg')] | |
index = np.random.randint(0, len(filename)) | |
filename = filename[index] | |
frost = cv2.imread(filename) | |
#randomly crop and convert to rgb | |
x_start, y_start = np.random.randint(0, frost.shape[0] - H), np.random.randint(0, frost.shape[1] - W) | |
frost = frost[x_start:x_start + H, y_start:y_start + W][..., [2, 1, 0]] | |
n_channels = len(img.getbands()) | |
isgray = n_channels == 1 | |
img = np.array(img) | |
if isgray: | |
img = np.expand_dims(img, axis=2) | |
img = np.repeat(img, 3, axis=2) | |
img = img * c[0] | |
frost = frost * c[1] | |
img = np.clip(c[0] * img + c[1] * frost, 0, 255) | |
img = Image.fromarray(img.astype(np.uint8)) | |
if isgray: | |
img = ImageOps.grayscale(img) | |
return img | |
class Snow: | |
def __init__(self): | |
pass | |
def __call__(self, img, mag=-1, prob=1.): | |
if np.random.uniform(0,1) > prob: | |
return img | |
W, H = img.size | |
c = [(0.1, 0.3, 3, 0.5, 10, 4, 0.8), | |
(0.2, 0.3, 2, 0.5, 12, 4, 0.7), | |
(0.55, 0.3, 4, 0.9, 12, 8, 0.7)] | |
if mag<0 or mag>=len(c): | |
index = np.random.randint(0, len(c)) | |
else: | |
index = mag | |
c = c[index] | |
n_channels = len(img.getbands()) | |
isgray = n_channels == 1 | |
img = np.array(img, dtype=np.float32) / 255. | |
if isgray: | |
img = np.expand_dims(img, axis=2) | |
img = np.repeat(img, 3, axis=2) | |
snow_layer = np.random.normal(size=img.shape[:2], loc=c[0], scale=c[1]) # [:2] for monochrome | |
#snow_layer = clipped_zoom(snow_layer[..., np.newaxis], c[2]) | |
snow_layer[snow_layer < c[3]] = 0 | |
snow_layer = Image.fromarray((np.clip(snow_layer.squeeze(), 0, 1) * 255).astype(np.uint8), mode='L') | |
output = BytesIO() | |
snow_layer.save(output, format='PNG') | |
snow_layer = MotionImage(blob=output.getvalue()) | |
snow_layer.motion_blur(radius=c[4], sigma=c[5], angle=np.random.uniform(-135, -45)) | |
snow_layer = cv2.imdecode(np.fromstring(snow_layer.make_blob(), np.uint8), | |
cv2.IMREAD_UNCHANGED) / 255. | |
#snow_layer = cv2.cvtColor(snow_layer, cv2.COLOR_BGR2RGB) | |
snow_layer = snow_layer[..., np.newaxis] | |
img = c[6] * img | |
gray_img = (1 - c[6]) * np.maximum(img, cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).reshape(H, W, 1) * 1.5 + 0.5) | |
img += gray_img | |
img = np.clip(img + snow_layer + np.rot90(snow_layer, k=2), 0, 1) * 255 | |
img = Image.fromarray(img.astype(np.uint8)) | |
if isgray: | |
img = ImageOps.grayscale(img) | |
return img | |
class Rain: | |
def __init__(self): | |
pass | |
def __call__(self, img, mag=-1, prob=1.): | |
if np.random.uniform(0,1) > prob: | |
return img | |
img = img.copy() | |
W, H = img.size | |
n_channels = len(img.getbands()) | |
isgray = n_channels == 1 | |
line_width = np.random.randint(1, 2) | |
c =[50, 70, 90] | |
if mag<0 or mag>=len(c): | |
index = 0 | |
else: | |
index = mag | |
c = c[index] | |
n_rains = np.random.randint(c, c+20) | |
slant = np.random.randint(-60, 60) | |
fillcolor = 200 if isgray else (200,200,200) | |
draw = ImageDraw.Draw(img) | |
for i in range(1, n_rains): | |
length = np.random.randint(5, 10) | |
x1 = np.random.randint(0, W-length) | |
y1 = np.random.randint(0, H-length) | |
x2 = x1 + length*math.sin(slant*math.pi/180.) | |
y2 = y1 + length*math.cos(slant*math.pi/180.) | |
x2 = int(x2) | |
y2 = int(y2) | |
draw.line([(x1,y1), (x2,y2)], width=line_width, fill=fillcolor) | |
return img | |
class Shadow: | |
def __init__(self): | |
pass | |
def __call__(self, img, mag=-1, prob=1.): | |
if np.random.uniform(0,1) > prob: | |
return img | |
#img = img.copy() | |
W, H = img.size | |
n_channels = len(img.getbands()) | |
isgray = n_channels == 1 | |
c =[64, 96, 128] | |
if mag<0 or mag>=len(c): | |
index = 0 | |
else: | |
index = mag | |
c = c[index] | |
img = img.convert('RGBA') | |
overlay = Image.new('RGBA', img.size, (255,255,255,0)) | |
draw = ImageDraw.Draw(overlay) | |
transparency = np.random.randint(c, c+32) | |
x1 = np.random.randint(0, W//2) | |
y1 = 0 | |
x2 = np.random.randint(W//2, W) | |
y2 = 0 | |
x3 = np.random.randint(W//2, W) | |
y3 = H - 1 | |
x4 = np.random.randint(0, W//2) | |
y4 = H - 1 | |
draw.polygon([(x1,y1), (x2,y2), (x3,y3), (x4,y4)], fill=(0,0,0,transparency)) | |
img = Image.alpha_composite(img, overlay) | |
img = img.convert("RGB") | |
if isgray: | |
img = ImageOps.grayscale(img) | |
return img | |