markytools's picture
added strexp
d61b9c7
import time
import warnings
from typing import Any, Callable, Dict, List, Optional
import torch
import torch.nn as nn
from captum._utils.models.linear_model.model import LinearModel
from torch.utils.data import DataLoader
def l2_loss(x1, x2, weights=None):
if weights is None:
return torch.mean((x1 - x2) ** 2) / 2.0
else:
return torch.sum((weights / weights.norm(p=1)) * ((x1 - x2) ** 2)) / 2.0
def sgd_train_linear_model(
model: LinearModel,
dataloader: DataLoader,
construct_kwargs: Dict[str, Any],
max_epoch: int = 100,
reduce_lr: bool = True,
initial_lr: float = 0.01,
alpha: float = 1.0,
loss_fn: Callable = l2_loss,
reg_term: Optional[int] = 1,
patience: int = 10,
threshold: float = 1e-4,
running_loss_window: Optional[int] = None,
device: Optional[str] = None,
init_scheme: str = "zeros",
debug: bool = False,
) -> Dict[str, float]:
r"""
Trains a linear model with SGD. This will continue to iterate your
dataloader until we converged to a solution or alternatively until we have
exhausted `max_epoch`.
Convergence is defined by the loss not changing by `threshold` amount for
`patience` number of iterations.
Args:
model
The model to train
dataloader
The data to train it with. We will assume the dataloader produces
either pairs or triples of the form (x, y) or (x, y, w). Where x and
y are typical pairs for supervised learning and w is a weight
vector.
We will call `model._construct_model_params` with construct_kwargs
and the input features set to `x.shape[1]` (`x.shape[0]` corresponds
to the batch size). We assume that `len(x.shape) == 2`, i.e. the
tensor is flat. The number of output features will be set to
y.shape[1] or 1 (if `len(y.shape) == 1`); we require `len(y.shape)
<= 2`.
max_epoch
The maximum number of epochs to exhaust
reduce_lr
Whether or not to reduce the learning rate as iterations progress.
Halves the learning rate when the training loss does not move. This
uses torch.optim.lr_scheduler.ReduceLROnPlateau and uses the
parameters `patience` and `threshold`
initial_lr
The initial learning rate to use.
alpha
A constant for the regularization term.
loss_fn
The loss to optimise for. This must accept three parameters:
x1 (predicted), x2 (labels) and a weight vector
reg_term
Regularization is defined by the `reg_term` norm of the weights.
Please use `None` if you do not wish to use regularization.
patience
Defines the number of iterations in a row the loss must remain
within `threshold` in order to be classified as converged.
threshold
Threshold for convergence detection.
running_loss_window
Used to report the training loss once we have finished training and
to determine when we have converged (along with reducing the
learning rate).
The reported training loss will take the last `running_loss_window`
iterations and average them.
If `None` we will approximate this to be the number of examples in
an epoch.
init_scheme
Initialization to use prior to training the linear model.
device
The device to send the model and data to. If None then no `.to` call
will be used.
debug
Whether to print the loss, learning rate per iteration
Returns
This will return the final training loss (averaged with
`running_loss_window`)
"""
loss_window: List[torch.Tensor] = []
min_avg_loss = None
convergence_counter = 0
converged = False
def get_point(datapoint):
if len(datapoint) == 2:
x, y = datapoint
w = None
else:
x, y, w = datapoint
if device is not None:
x = x.to(device)
y = y.to(device)
if w is not None:
w = w.to(device)
return x, y, w
# get a point and construct the model
data_iter = iter(dataloader)
x, y, w = get_point(next(data_iter))
model._construct_model_params(
in_features=x.shape[1],
out_features=y.shape[1] if len(y.shape) == 2 else 1,
**construct_kwargs,
)
model.train()
assert model.linear is not None
if init_scheme is not None:
assert init_scheme in ["xavier", "zeros"]
with torch.no_grad():
if init_scheme == "xavier":
torch.nn.init.xavier_uniform_(model.linear.weight)
else:
model.linear.weight.zero_()
if model.linear.bias is not None:
model.linear.bias.zero_()
optim = torch.optim.SGD(model.parameters(), lr=initial_lr)
if reduce_lr:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optim, factor=0.5, patience=patience, threshold=threshold
)
t1 = time.time()
epoch = 0
i = 0
while epoch < max_epoch:
while True: # for x, y, w in dataloader
if running_loss_window is None:
running_loss_window = x.shape[0] * len(dataloader)
y = y.view(x.shape[0], -1)
if w is not None:
w = w.view(x.shape[0], -1)
i += 1
out = model(x)
loss = loss_fn(y, out, w)
if reg_term is not None:
reg = torch.norm(model.linear.weight, p=reg_term)
loss += reg.sum() * alpha
if len(loss_window) >= running_loss_window:
loss_window = loss_window[1:]
loss_window.append(loss.clone().detach())
assert len(loss_window) <= running_loss_window
average_loss = torch.mean(torch.stack(loss_window))
if min_avg_loss is not None:
# if we haven't improved by at least `threshold`
if average_loss > min_avg_loss or torch.isclose(
min_avg_loss, average_loss, atol=threshold
):
convergence_counter += 1
if convergence_counter >= patience:
converged = True
break
else:
convergence_counter = 0
if min_avg_loss is None or min_avg_loss >= average_loss:
min_avg_loss = average_loss.clone()
if debug:
print(
f"lr={optim.param_groups[0]['lr']}, Loss={loss},"
+ "Aloss={average_loss}, min_avg_loss={min_avg_loss}"
)
loss.backward()
optim.step()
model.zero_grad()
if scheduler:
scheduler.step(average_loss)
temp = next(data_iter, None)
if temp is None:
break
x, y, w = get_point(temp)
if converged:
break
epoch += 1
data_iter = iter(dataloader)
x, y, w = get_point(next(data_iter))
t2 = time.time()
return {
"train_time": t2 - t1,
"train_loss": torch.mean(torch.stack(loss_window)).item(),
"train_iter": i,
"train_epoch": epoch,
}
class NormLayer(nn.Module):
def __init__(self, mean, std, n=None, eps=1e-8) -> None:
super().__init__()
self.mean = mean
self.std = std
self.eps = eps
def forward(self, x):
return (x - self.mean) / (self.std + self.eps)
def sklearn_train_linear_model(
model: LinearModel,
dataloader: DataLoader,
construct_kwargs: Dict[str, Any],
sklearn_trainer: str = "Lasso",
norm_input: bool = False,
**fit_kwargs,
):
r"""
Alternative method to train with sklearn. This does introduce some slight
overhead as we convert the tensors to numpy and then convert the resulting
trained model to a `LinearModel` object. However, this conversion
should be negligible.
Please note that this assumes:
0. You have sklearn and numpy installed
1. The dataset can fit into memory
Args
model
The model to train.
dataloader
The data to use. This will be exhausted and converted to numpy
arrays. Therefore please do not feed an infinite dataloader.
norm_input
Whether or not to normalize the input
sklearn_trainer
The sklearn model to use to train the model. Please refer to
sklearn.linear_model for a list of modules to use.
construct_kwargs
Additional arguments provided to the `sklearn_trainer` constructor
fit_kwargs
Other arguments to send to `sklearn_trainer`'s `.fit` method
"""
from functools import reduce
try:
import numpy as np
except ImportError:
raise ValueError("numpy is not available. Please install numpy.")
try:
import sklearn
import sklearn.linear_model
import sklearn.svm
except ImportError:
raise ValueError("sklearn is not available. Please install sklearn >= 0.23")
if not sklearn.__version__ >= "0.23.0":
warnings.warn(
"Must have sklearn version 0.23.0 or higher to use "
"sample_weight in Lasso regression."
)
num_batches = 0
xs, ys, ws = [], [], []
for data in dataloader:
if len(data) == 3:
x, y, w = data
else:
assert len(data) == 2
x, y = data
w = None
xs.append(x.cpu().numpy())
ys.append(y.cpu().numpy())
if w is not None:
ws.append(w.cpu().numpy())
num_batches += 1
x = np.concatenate(xs, axis=0)
y = np.concatenate(ys, axis=0)
if len(ws) > 0:
w = np.concatenate(ws, axis=0)
else:
w = None
if norm_input:
mean, std = x.mean(0), x.std(0)
x -= mean
x /= std
t1 = time.time()
sklearn_model = reduce(
lambda val, el: getattr(val, el), [sklearn] + sklearn_trainer.split(".")
)(**construct_kwargs)
try:
sklearn_model.fit(x, y, sample_weight=w, **fit_kwargs)
except TypeError:
sklearn_model.fit(x, y, **fit_kwargs)
warnings.warn(
"Sample weight is not supported for the provided linear model!"
" Trained model without weighting inputs. For Lasso, please"
" upgrade sklearn to a version >= 0.23.0."
)
t2 = time.time()
# Convert weights to pytorch
classes = (
torch.IntTensor(sklearn_model.classes_)
if hasattr(sklearn_model, "classes_")
else None
)
# extract model device
device = model.device if hasattr(model, "device") else "cpu"
num_outputs = sklearn_model.coef_.shape[0] if sklearn_model.coef_.ndim > 1 else 1
weight_values = torch.FloatTensor(sklearn_model.coef_).to(device) # type: ignore
bias_values = torch.FloatTensor([sklearn_model.intercept_]).to( # type: ignore
device # type: ignore
) # type: ignore
model._construct_model_params(
norm_type=None,
weight_values=weight_values.view(num_outputs, -1),
bias_value=bias_values.squeeze().unsqueeze(0),
classes=classes,
)
if norm_input:
model.norm = NormLayer(mean, std)
return {"train_time": t2 - t1}