markytools's picture
added strexp
d61b9c7
#!/usr/bin/env python3
import os
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from captum.insights import AttributionVisualizer, Batch
from captum.insights.attr_vis.features import ImageFeature
def get_classes():
classes = [
"Plane",
"Car",
"Bird",
"Cat",
"Deer",
"Dog",
"Frog",
"Horse",
"Ship",
"Truck",
]
return classes
def get_pretrained_model():
class Net(nn.Module):
def __init__(self) -> None:
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2, 2)
self.pool2 = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.relu1 = nn.ReLU()
self.relu2 = nn.ReLU()
self.relu3 = nn.ReLU()
self.relu4 = nn.ReLU()
def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = self.relu3(self.fc1(x))
x = self.relu4(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
pt_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "models/cifar_torchvision.pt")
)
net.load_state_dict(torch.load(pt_path))
return net
def baseline_func(input):
return input * 0
def formatted_data_iter():
dataset = torchvision.datasets.CIFAR10(
root="data/test", train=False, download=True, transform=transforms.ToTensor()
)
dataloader = iter(
torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=False, num_workers=2)
)
while True:
images, labels = next(dataloader)
yield Batch(inputs=images, labels=labels)
def main():
normalize = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
model = get_pretrained_model()
visualizer = AttributionVisualizer(
models=[model],
score_func=lambda o: torch.nn.functional.softmax(o, 1),
classes=get_classes(),
features=[
ImageFeature(
"Photo",
baseline_transforms=[baseline_func],
input_transforms=[normalize],
)
],
dataset=formatted_data_iter(),
)
visualizer.serve(debug=True)
if __name__ == "__main__":
main()