Spaces:
Build error
Build error
import settings | |
import captum | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import torch.backends.cudnn as cudnn | |
from torchvision import transforms | |
from utils import get_args | |
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter | |
import string | |
import time | |
import sys | |
from dataset import hierarchical_dataset, AlignCollate | |
import validators | |
from model import Model, STRScore | |
from PIL import Image | |
from lime.wrappers.scikit_image import SegmentationAlgorithm | |
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge | |
import random | |
import os | |
from skimage.color import gray2rgb | |
import pickle | |
from train_shap_corr import getPredAndConf | |
import re | |
from captum_test import acquire_average_auc, acquireListOfAveAUC, acquire_bestacc_attr, acquireAttribution, saveAttrData | |
import copy | |
from captum_improve_vitstr import rankedAttributionsBySegm | |
from matplotlib import pyplot as plt | |
from captum.attr._utils.visualization import visualize_image_attr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
from captum.attr import ( | |
GradientShap, | |
DeepLift, | |
DeepLiftShap, | |
IntegratedGradients, | |
LayerConductance, | |
NeuronConductance, | |
NoiseTunnel, | |
Saliency, | |
InputXGradient, | |
GuidedBackprop, | |
Deconvolution, | |
GuidedGradCam, | |
FeatureAblation, | |
ShapleyValueSampling, | |
Lime, | |
KernelShap | |
) | |
from captum.metrics import ( | |
infidelity, | |
sensitivity_max | |
) | |
### Returns the mean for each segmentation having shape as the same as the input | |
### This function can only one attribution image at a time | |
def averageSegmentsOut(attr, segments): | |
averagedInput = torch.clone(attr) | |
sortedDict = {} | |
for x in np.unique(segments): | |
segmentMean = torch.mean(attr[segments == x][:]) | |
sortedDict[x] = float(segmentMean.detach().cpu().numpy()) | |
averagedInput[segments == x] = segmentMean | |
return averagedInput, sortedDict | |
### Output and save segmentations only for one dataset only | |
def outputSegmOnly(opt): | |
### targetDataset - one dataset only, SVTP-645, CUTE80-288images | |
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset) | |
if not os.path.exists(segmRootDir): | |
os.makedirs(segmRootDir) | |
opt.eval = True | |
### Only IIIT5k_3000 | |
if opt.fast_acc: | |
# # To easily compute the total accuracy of our paper. | |
eval_data_list = [targetDataset] | |
else: | |
# The evaluation datasets, dataset order is same with Table 1 in our paper. | |
eval_data_list = [targetDataset] | |
### Taken from LIME | |
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
max_dist=200, ratio=0.2, | |
random_seed=random.randint(0, 1000)) | |
for eval_data in eval_data_list: | |
eval_data_path = os.path.join(opt.eval_data, eval_data) | |
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt) | |
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt) | |
evaluation_loader = torch.utils.data.DataLoader( | |
eval_data, batch_size=1, | |
shuffle=False, | |
num_workers=int(opt.workers), | |
collate_fn=AlignCollate_evaluation, pin_memory=True) | |
for i, (image_tensors, labels) in enumerate(evaluation_loader): | |
imgDataDict = {} | |
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
if img_numpy.shape[0] == 1: | |
img_numpy = gray2rgb(img_numpy[0]) | |
# print("img_numpy shape: ", img_numpy.shape) # (224,224,3) | |
segmOutput = segmentation_fn(img_numpy) | |
imgDataDict['segdata'] = segmOutput | |
imgDataDict['label'] = labels[0] | |
outputPickleFile = segmRootDir + "{}.pkl".format(i) | |
with open(outputPickleFile, 'wb') as f: | |
pickle.dump(imgDataDict, f) | |
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring): | |
# print("segmentations unique len: ", np.unique(segmentations)) | |
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations) | |
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])] | |
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score | |
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...} | |
# print("aveSegmentations unique len: ", np.unique(aveSegmentations)) | |
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0 | |
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224) | |
# print("aveSegmentations: ", aveSegmentations) | |
n_correct = [] | |
confidenceList = [] # First index is one feature removed, second index two features removed, and so on... | |
clonedImg = torch.clone(origImg) | |
gt = str(labels) | |
for totalSegToHide in range(0, len(sortedKeys)): | |
### Acquire LIME prediction result | |
currentSegmentToHide = sortedKeys[totalSegToHide] | |
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0 | |
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt])) | |
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting. | |
if opt.sensitive and opt.data_filtering_off: | |
pred = pred.lower() | |
gt = gt.lower() | |
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz' | |
out_of_alphanumeric_case_insensitve = f'[^{alphanumeric_case_insensitve}]' | |
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred) | |
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt) | |
if pred == gt: | |
n_correct.append(1) | |
else: | |
n_correct.append(0) | |
confScore = confScore[0][0]*100 | |
confidenceList.append(confScore) | |
return n_correct, confidenceList | |
### Once you have the selectivity_eval_results.pkl file, | |
def acquire_selectivity_auc(opt, pkl_filename=None): | |
if pkl_filename is None: | |
pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR | |
accKeys = [] | |
with open(pkl_filename, 'rb') as f: | |
selectivity_data = pickle.load(f) | |
for resDictIdx, resDict in enumerate(selectivity_data): | |
keylistAcc = [] | |
keylistConf = [] | |
metricsKeys = resDict.keys() | |
for keyStr in resDict.keys(): | |
if "_acc" in keyStr: keylistAcc.append(keyStr) | |
if "_conf" in keyStr: keylistConf.append(keyStr) | |
# Need to check if network correctly predicted the image | |
for metrics_accStr in keylistAcc: | |
if 1 not in resDict[metrics_accStr]: print("resDictIdx") | |
### This acquires the attributes of the STR network on individual character levels, | |
### then averages them. | |
def acquireSingleCharAttrAve(opt): | |
### targetDataset - one dataset only, CUTE80 has 288 samples | |
# 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80' | |
targetDataset = settings.TARGET_DATASET | |
segmRootDir = "{}/32X128/{}/".format(settings.SEGM_DIR, targetDataset) | |
outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, targetDataset) | |
outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, targetDataset) | |
attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, targetDataset) | |
### Set only one below to True to have enough GPU | |
acquireSelectivity = True | |
acquireInfidelity = False | |
acquireSensitivity = False ### GPU error | |
if not os.path.exists(outputDir): | |
os.makedirs(outputDir) | |
if not os.path.exists(attrOutputDir): | |
os.makedirs(attrOutputDir) | |
model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True) | |
model = model.to(device) | |
model_obj = model | |
converter = TokenLabelConverter(opt) | |
modelCopy = copy.deepcopy(model) | |
""" evaluation """ | |
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy) | |
super_pixel_model_singlechar = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
modelCopy, | |
scoring_singlechar | |
).to(device) | |
modelCopy.eval() | |
scoring_singlechar.eval() | |
super_pixel_model_singlechar.eval() | |
# Single Char Attribution Averaging | |
# enableSingleCharAttrAve - set to True | |
scoring = STRScore(opt=opt, converter=converter, device=device, model=model) | |
super_pixel_model = torch.nn.Sequential( | |
# super_pixler, | |
# numpy2torch_converter, | |
model, | |
scoring | |
).to(device) | |
model.eval() | |
scoring.eval() | |
super_pixel_model.eval() | |
if opt.blackbg: | |
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32) | |
trainList = np.array(shapImgLs) | |
background = torch.from_numpy(trainList).to(device) | |
opt.eval = True | |
### Only IIIT5k_3000 | |
if opt.fast_acc: | |
# # To easily compute the total accuracy of our paper. | |
eval_data_list = [targetDataset] ### One dataset only | |
else: | |
# The evaluation datasets, dataset order is same with Table 1 in our paper. | |
eval_data_list = [targetDataset] | |
if opt.calculate_infer_time: | |
evaluation_batch_size = 1 # batch_size should be 1 to calculate the GPU inference time per image. | |
else: | |
evaluation_batch_size = opt.batch_size | |
selectivity_eval_results = [] | |
testImgCount = 0 | |
list_accuracy = [] | |
total_forward_time = 0 | |
total_evaluation_data_number = 0 | |
total_correct_number = 0 | |
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
max_dist=200, ratio=0.2, | |
random_seed=random.randint(0, 1000)) | |
for eval_data in eval_data_list: | |
eval_data_path = os.path.join(opt.eval_data, eval_data) | |
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt) | |
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt, segmRootDir=segmRootDir) | |
evaluation_loader = torch.utils.data.DataLoader( | |
eval_data, batch_size=1, | |
shuffle=False, | |
num_workers=int(opt.workers), | |
collate_fn=AlignCollate_evaluation, pin_memory=True) | |
testImgCount = 0 | |
for i, (orig_img_tensors, segAndLabels) in enumerate(evaluation_loader): | |
results_dict = {} | |
aveAttr = [] | |
aveAttr_charContrib = [] | |
segmData, labels = segAndLabels[0] | |
target = converter.encode([labels]) | |
# labels: RONALDO | |
segmDataNP = segmData["segdata"] | |
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0) | |
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation | |
segmTensor = segmTensor.to(device) | |
img1 = orig_img_tensors.to(device) | |
img1.requires_grad = True | |
bgImg = torch.zeros(img1.shape).to(device) | |
### Single char averaging | |
if settings.MODEL == 'vitstr': | |
charOffset = 1 | |
elif settings.MODEL == 'parseq': | |
charOffset = 0 | |
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1 | |
# preds = model(img1, seqlen=converter.batch_max_length) | |
input = img1 | |
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
origImgNP = gray2rgb(origImgNP) | |
### BASELINE Evaluations | |
### Integrated Gradients | |
ig = IntegratedGradients(super_pixel_model) | |
attributions = ig.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["intgrad_acc"] = n_correct | |
results_dict["intgrad_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["intgrad_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["intgrad_sens"] = sens | |
### Gradient SHAP using zero-background | |
gs = GradientShap(super_pixel_model) | |
# We define a distribution of baselines and draw `n_samples` from that | |
# distribution in order to estimate the expectations of gradients across all baselines | |
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW)) | |
baseline_dist = baseline_dist.to(device) | |
attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["gradshap_acc"] = n_correct | |
results_dict["gradshap_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["gradshap_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["gradshap_sens"] = sens | |
### DeepLift using zero-background | |
dl = DeepLift(super_pixel_model) | |
attributions = dl.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["deeplift_acc"] = n_correct | |
results_dict["deeplift_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["deeplift_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["deeplift_sens"] = sens | |
### Saliency | |
saliency = Saliency(super_pixel_model) | |
attributions = saliency.attribute(input, target=0) ### target=class0 | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_saliency.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["saliency_acc"] = n_correct | |
results_dict["saliency_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["saliency_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["saliency_sens"] = sens | |
### InputXGradient | |
input_x_gradient = InputXGradient(super_pixel_model) | |
attributions = input_x_gradient.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["inpxgrad_acc"] = n_correct | |
results_dict["inpxgrad_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["inpxgrad_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["inpxgrad_sens"] = sens | |
### GuidedBackprop | |
gbp = GuidedBackprop(super_pixel_model) | |
attributions = gbp.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["guidedbp_acc"] = n_correct | |
results_dict["guidedbp_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["guidedbp_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["guidedbp_sens"] = sens | |
### Deconvolution | |
deconv = Deconvolution(super_pixel_model) | |
attributions = deconv.attribute(input, target=0) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_deconv.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["deconv_acc"] = n_correct | |
results_dict["deconv_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["deconv_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["deconv_sens"] = sens | |
### Feature ablator | |
ablator = FeatureAblation(super_pixel_model) | |
attributions = ablator.attribute(input, target=0, feature_mask=segmTensor) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_featablt.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["featablt_acc"] = n_correct | |
results_dict["featablt_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["featablt_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["featablt_sens"] = sens | |
### Shapley Value Sampling | |
svs = ShapleyValueSampling(super_pixel_model) | |
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate | |
attributions = svs.attribute(input, target=0, feature_mask=segmTensor) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_shapley.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["shapley_acc"] = n_correct | |
results_dict["shapley_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["shapley_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["shapley_sens"] = sens | |
## LIME | |
interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME | |
lime = Lime(super_pixel_model, interpretable_model=interpretable_model) | |
attributions = lime.attribute(input, target=0, feature_mask=segmTensor) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_lime.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["lime_acc"] = n_correct | |
results_dict["lime_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["lime_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["lime_sens"] = sens | |
### KernelSHAP | |
ks = KernelShap(super_pixel_model) | |
attributions = ks.attribute(input, target=0, feature_mask=segmTensor) | |
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, converter, labels, scoring) | |
results_dict["kernelshap_acc"] = n_correct | |
results_dict["kernelshap_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions).detach().cpu().numpy()) | |
results_dict["kernelshap_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict["kernelshap_sens"] = sens | |
selectivity_eval_results.append(results_dict) | |
with open(outputSelectivityPkl, 'wb') as f: | |
pickle.dump(selectivity_eval_results, f) | |
testImgCount += 1 | |
print("testImgCount: ", testImgCount) | |
bestAttributionKeyStr = acquire_bestacc_attr(opt, outputSelectivityPkl) | |
bestAttrName = bestAttributionKeyStr.split('_')[0] | |
testImgCount = 0 | |
for i, (orig_img_tensors, segAndLabels) in enumerate(evaluation_loader): | |
results_dict = {} | |
aveAttr = [] | |
aveAttr_charContrib = [] | |
segmData, labels = segAndLabels[0] | |
target = converter.encode([labels]) | |
# labels: RONALDO | |
segmDataNP = segmData["segdata"] | |
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0) | |
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation | |
segmTensor = segmTensor.to(device) | |
# print("segmTensor shape: ", segmTensor.shape) | |
# img1 = np.asarray(imgPIL.convert('L')) | |
# sys.exit() | |
# img1 = img1 / 255.0 | |
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device) | |
img1 = orig_img_tensors.to(device) | |
img1.requires_grad = True | |
bgImg = torch.zeros(img1.shape).to(device) | |
### Single char averaging | |
if settings.MODEL == 'vitstr': | |
charOffset = 1 | |
elif settings.MODEL == 'parseq': | |
target = target[:, 1:] # First position [GO] not used in parseq too. | |
# 0 index is [GO] char, not used in parseq, only the [EOS] which is in 1 index | |
target[target > 0] -= 1 | |
charOffset = 0 | |
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1 | |
# preds = model(img1, seqlen=converter.batch_max_length) | |
input = img1 | |
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
origImgNP = gray2rgb(origImgNP) | |
### Captum test | |
collectedAttributions = [] | |
for charIdx in range(0, len(labels)): | |
scoring_singlechar.setSingleCharOutput(charIdx + charOffset) | |
gtClassNum = target[0][charIdx + charOffset] | |
# Best | |
attributions = acquireAttribution(opt, super_pixel_model_singlechar, \ | |
input, segmTensor, gtClassNum, bestAttributionKeyStr, device) | |
collectedAttributions.append(attributions) | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_{}_l.png'.format(i, bestAttrName)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_l.pkl', aveAttributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar) | |
results_dict[f"{bestAttrName}_local_acc"] = n_correct | |
results_dict[f"{bestAttrName}_local_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy()) | |
results_dict[f"{bestAttrName}_local_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict[f"{bestAttrName}_local_sens"] = sens | |
### Best single | |
attributions = acquireAttribution(opt, super_pixel_model, \ | |
input, segmTensor, 0, bestAttributionKeyStr, device) | |
collectedAttributions.append(attributions) | |
### Global + Local context | |
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
rankedAttr = gray2rgb(rankedAttr) | |
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map') | |
mplotfig.savefig(outputDir + '{}_{}_gl.png'.format(i, bestAttrName)) | |
mplotfig.clear() | |
plt.close(mplotfig) | |
saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_gl.pkl', aveAttributions, segmDataNP, origImgNP) | |
if acquireSelectivity: | |
n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, converter, labels, scoring_singlechar) | |
results_dict[f"{bestAttrName}_global_local_acc"] = n_correct | |
results_dict[f"{bestAttrName}_global_local_conf"] = confidenceList | |
if acquireInfidelity: | |
infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy()) | |
results_dict[f"{bestAttrName}_global_local_infid"] = infid | |
if acquireSensitivity: | |
sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy()) | |
results_dict[f"{bestAttrName}_global_local_sens"] = sens | |
selectivity_eval_results.append(results_dict) | |
with open(outputSelectivityPkl, 'wb') as f: | |
pickle.dump(selectivity_eval_results, f) | |
testImgCount += 1 | |
print("testImgCount GlobLoc: ", testImgCount) | |
if __name__ == '__main__': | |
# deleteInf() | |
opt = get_args(is_train=False) | |
""" vocab / character number configuration """ | |
if opt.sensitive: | |
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). | |
cudnn.benchmark = True | |
cudnn.deterministic = True | |
opt.num_gpu = torch.cuda.device_count() | |
# combineBestDataXAI(opt) | |
# acquire_average_auc(opt) | |
# acquireListOfAveAUC(opt) | |
acquireSingleCharAttrAve(opt) | |