Spaces:
Build error
Build error
Commit
·
3431661
1
Parent(s):
21bfe64
updated app
Browse files- app(orig).py +36 -0
- app.py +17 -160
app(orig).py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
# x = st.slider('Select a value')
|
5 |
+
# st.write(x, 'squared is', x * x)
|
6 |
+
|
7 |
+
image = Image.open('demo_image/demo_ballys.jpg') #Brand logo image (optional)
|
8 |
+
#Create two columns with different width
|
9 |
+
col1, col2 = st.columns( [0.8, 0.2])
|
10 |
+
with col1: # To display the header text using css style
|
11 |
+
st.markdown(""" <style> .font {
|
12 |
+
font-size:35px ; font-family: 'Cooper Black'; color: #FF9633;}
|
13 |
+
</style> """, unsafe_allow_html=True)
|
14 |
+
st.markdown('<p class="font">Upload your photo here...</p>', unsafe_allow_html=True)
|
15 |
+
with col2: # To display brand logo
|
16 |
+
st.image(image, width=150)
|
17 |
+
|
18 |
+
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
|
19 |
+
if uploaded_file is not None:
|
20 |
+
# To read file as bytes:
|
21 |
+
bytes_data = uploaded_file.getvalue()
|
22 |
+
pillowImg = Image.open(uploaded_file)
|
23 |
+
# print("pillowImg shape: ", )
|
24 |
+
st.write(pillowImg.size)
|
25 |
+
|
26 |
+
# # To convert to a string based IO:
|
27 |
+
# stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
28 |
+
# st.write(stringio)
|
29 |
+
#
|
30 |
+
# # To read file as string:
|
31 |
+
# string_data = stringio.read()
|
32 |
+
# st.write(string_data)
|
33 |
+
#
|
34 |
+
# # Can be used wherever a "file-like" object is accepted:
|
35 |
+
# dataframe = pd.read_csv(uploaded_file)
|
36 |
+
# st.write(dataframe)
|
app.py
CHANGED
@@ -1,84 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
-
import settings
|
4 |
-
import captum
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
import torch.backends.cudnn as cudnn
|
9 |
-
from utils import get_args
|
10 |
-
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
|
11 |
-
import string
|
12 |
-
import time
|
13 |
-
import sys
|
14 |
-
from dataset import hierarchical_dataset, AlignCollate
|
15 |
-
import validators
|
16 |
-
from model import Model, STRScore
|
17 |
-
from PIL import Image
|
18 |
-
from lime.wrappers.scikit_image import SegmentationAlgorithm
|
19 |
-
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
|
20 |
-
import random
|
21 |
-
import os
|
22 |
-
from skimage.color import gray2rgb
|
23 |
-
import pickle
|
24 |
-
from train_shap_corr import getPredAndConf
|
25 |
-
import re
|
26 |
-
from captum_test import acquire_average_auc, saveAttrData
|
27 |
-
import copy
|
28 |
-
from skimage.color import gray2rgb
|
29 |
-
from matplotlib import pyplot as plt
|
30 |
-
from torchvision import transforms
|
31 |
-
|
32 |
-
device = torch.device('cpu')
|
33 |
-
opt = get_args(is_train=False)
|
34 |
-
|
35 |
-
""" vocab / character number configuration """
|
36 |
-
if opt.sensitive:
|
37 |
-
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
|
38 |
-
|
39 |
-
cudnn.benchmark = True
|
40 |
-
cudnn.deterministic = True
|
41 |
-
# opt.num_gpu = torch.cuda.device_count()
|
42 |
-
|
43 |
-
# combineBestDataXAI(opt)
|
44 |
-
# acquire_average_auc(opt)
|
45 |
-
# acquireSingleCharAttrAve(opt)
|
46 |
-
modelName = "parseq"
|
47 |
-
opt.modelName = modelName
|
48 |
-
# opt.eval_data = "datasets/data_lmdb_release/evaluation"
|
49 |
-
|
50 |
-
if modelName=="vitstr":
|
51 |
-
opt.benchmark_all_eval = True
|
52 |
-
opt.Transformation = "None"
|
53 |
-
opt.FeatureExtraction = "None"
|
54 |
-
opt.SequenceModeling = "None"
|
55 |
-
opt.Prediction = "None"
|
56 |
-
opt.Transformer = True
|
57 |
-
opt.sensitive = True
|
58 |
-
opt.imgH = 224
|
59 |
-
opt.imgW = 224
|
60 |
-
opt.data_filtering_off = True
|
61 |
-
opt.TransformerModel= "vitstr_base_patch16_224"
|
62 |
-
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth"
|
63 |
-
opt.batch_size = 1
|
64 |
-
opt.workers = 0
|
65 |
-
opt.scorer = "mean"
|
66 |
-
opt.blackbg = True
|
67 |
-
elif modelName=="parseq":
|
68 |
-
opt.benchmark_all_eval = True
|
69 |
-
opt.Transformation = "None"
|
70 |
-
opt.FeatureExtraction = "None"
|
71 |
-
opt.SequenceModeling = "None"
|
72 |
-
opt.Prediction = "None"
|
73 |
-
opt.Transformer = True
|
74 |
-
opt.sensitive = True
|
75 |
-
opt.imgH = 32
|
76 |
-
opt.imgW = 128
|
77 |
-
opt.data_filtering_off = True
|
78 |
-
opt.batch_size = 1
|
79 |
-
opt.workers = 0
|
80 |
-
opt.scorer = "mean"
|
81 |
-
opt.blackbg = True
|
82 |
|
83 |
# x = st.slider('Select a value')
|
84 |
# st.write(x, 'squared is', x * x)
|
@@ -96,84 +17,20 @@ with col2: # To display brand logo
|
|
96 |
|
97 |
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
|
98 |
if uploaded_file is not None:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
aveAttr_charContrib = []
|
117 |
-
target = converter.encode([labels])
|
118 |
-
|
119 |
-
# labels: RONALDO
|
120 |
-
segmDataNP = segmOutput
|
121 |
-
img1.requires_grad = True
|
122 |
-
bgImg = torch.zeros(img1.shape).to(device)
|
123 |
-
|
124 |
-
# preds = model(img1, seqlen=converter.batch_max_length)
|
125 |
-
input = img1
|
126 |
-
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
|
127 |
-
origImgNP = gray2rgb(origImgNP)
|
128 |
-
charOffset = 0
|
129 |
-
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
|
130 |
-
target = converter.encode([labels])
|
131 |
-
|
132 |
-
### Local explanations only
|
133 |
-
collectedAttributions = []
|
134 |
-
for charIdx in range(0, len(labels)):
|
135 |
-
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
|
136 |
-
gtClassNum = target[0][charIdx + charOffset]
|
137 |
-
|
138 |
-
gs = GradientShap(super_pixel_model_singlechar)
|
139 |
-
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
140 |
-
baseline_dist = baseline_dist.to(device)
|
141 |
-
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
142 |
-
collectedAttributions.append(attributions)
|
143 |
-
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
144 |
-
# if not torch.isnan(aveAttributions).any():
|
145 |
-
# rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
146 |
-
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
147 |
-
# rankedAttr = gray2rgb(rankedAttr)
|
148 |
-
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
149 |
-
# mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
|
150 |
-
# mplotfig.clear()
|
151 |
-
# plt.close(mplotfig)
|
152 |
-
|
153 |
-
### Local Sampling
|
154 |
-
gs = GradientShap(super_pixel_model)
|
155 |
-
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
156 |
-
baseline_dist = baseline_dist.to(device)
|
157 |
-
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
158 |
-
# if not torch.isnan(attributions).any():
|
159 |
-
# collectedAttributions.append(attributions)
|
160 |
-
# rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
|
161 |
-
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
162 |
-
# rankedAttr = gray2rgb(rankedAttr)
|
163 |
-
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
164 |
-
# mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
|
165 |
-
# mplotfig.clear()
|
166 |
-
# plt.close(mplotfig)
|
167 |
-
|
168 |
-
### Global + Local context
|
169 |
-
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
170 |
-
if not torch.isnan(aveAttributions).any():
|
171 |
-
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
172 |
-
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
173 |
-
rankedAttr = gray2rgb(rankedAttr)
|
174 |
-
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
175 |
-
fig = mplotfig.figure(figsize=(8,8))
|
176 |
-
st.pyplot(fig)
|
177 |
-
# mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
|
178 |
-
# mplotfig.clear()
|
179 |
-
# plt.close(mplotfig)
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# x = st.slider('Select a value')
|
5 |
# st.write(x, 'squared is', x * x)
|
|
|
17 |
|
18 |
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
|
19 |
if uploaded_file is not None:
|
20 |
+
# To read file as bytes:
|
21 |
+
bytes_data = uploaded_file.getvalue()
|
22 |
+
pillowImg = Image.open(uploaded_file)
|
23 |
+
# print("pillowImg shape: ", )
|
24 |
+
st.write(pillowImg.size)
|
25 |
+
|
26 |
+
# # To convert to a string based IO:
|
27 |
+
# stringio = StringIO(uploaded_file.getvalue().decode("utf-8"))
|
28 |
+
# st.write(stringio)
|
29 |
+
#
|
30 |
+
# # To read file as string:
|
31 |
+
# string_data = stringio.read()
|
32 |
+
# st.write(string_data)
|
33 |
+
#
|
34 |
+
# # Can be used wherever a "file-like" object is accepted:
|
35 |
+
# dataframe = pd.read_csv(uploaded_file)
|
36 |
+
# st.write(dataframe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|