Spaces:
Build error
Build error
Commit
·
7978529
1
Parent(s):
d61b9c7
updated app py
Browse files- .gitignore +5 -0
- app.py +177 -2
- model.py +5 -0
- requirements.txt +175 -0
- settings.py +1 -1
- str_exp_demo.py +2 -2
- str_exp_demo_huggingface.py +513 -0
- utils.py +6 -7
.gitignore
CHANGED
@@ -21,12 +21,17 @@
|
|
21 |
*.sh
|
22 |
**/__pycache__
|
23 |
workdir/
|
|
|
24 |
.remote-sync.json
|
25 |
*.png
|
|
|
26 |
pretrained/
|
|
|
27 |
attributionImgs/
|
28 |
attributionImgsOld/
|
29 |
attrSelectivityOld/
|
|
|
|
|
30 |
|
31 |
### Linux ###
|
32 |
*~
|
|
|
21 |
*.sh
|
22 |
**/__pycache__
|
23 |
workdir/
|
24 |
+
datasets/
|
25 |
.remote-sync.json
|
26 |
*.png
|
27 |
+
demo_image_output/
|
28 |
pretrained/
|
29 |
+
attributionData/
|
30 |
attributionImgs/
|
31 |
attributionImgsOld/
|
32 |
attrSelectivityOld/
|
33 |
+
pretrained.zip
|
34 |
+
datasets.zip
|
35 |
|
36 |
### Linux ###
|
37 |
*~
|
app.py
CHANGED
@@ -1,4 +1,179 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import settings
|
4 |
+
import captum
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.backends.cudnn as cudnn
|
9 |
+
from utils import get_args
|
10 |
+
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
|
11 |
+
import string
|
12 |
+
import time
|
13 |
+
import sys
|
14 |
+
from dataset import hierarchical_dataset, AlignCollate
|
15 |
+
import validators
|
16 |
+
from model import Model, STRScore
|
17 |
+
from PIL import Image
|
18 |
+
from lime.wrappers.scikit_image import SegmentationAlgorithm
|
19 |
+
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
|
20 |
+
import random
|
21 |
+
import os
|
22 |
+
from skimage.color import gray2rgb
|
23 |
+
import pickle
|
24 |
+
from train_shap_corr import getPredAndConf
|
25 |
+
import re
|
26 |
+
from captum_test import acquire_average_auc, saveAttrData
|
27 |
+
import copy
|
28 |
+
from skimage.color import gray2rgb
|
29 |
+
from matplotlib import pyplot as plt
|
30 |
+
from torchvision import transforms
|
31 |
|
32 |
+
device = torch.device('cpu')
|
33 |
+
opt = get_args(is_train=False)
|
34 |
+
|
35 |
+
""" vocab / character number configuration """
|
36 |
+
if opt.sensitive:
|
37 |
+
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
|
38 |
+
|
39 |
+
cudnn.benchmark = True
|
40 |
+
cudnn.deterministic = True
|
41 |
+
# opt.num_gpu = torch.cuda.device_count()
|
42 |
+
|
43 |
+
# combineBestDataXAI(opt)
|
44 |
+
# acquire_average_auc(opt)
|
45 |
+
# acquireSingleCharAttrAve(opt)
|
46 |
+
modelName = "parseq"
|
47 |
+
opt.modelName = modelName
|
48 |
+
# opt.eval_data = "datasets/data_lmdb_release/evaluation"
|
49 |
+
|
50 |
+
if modelName=="vitstr":
|
51 |
+
opt.benchmark_all_eval = True
|
52 |
+
opt.Transformation = "None"
|
53 |
+
opt.FeatureExtraction = "None"
|
54 |
+
opt.SequenceModeling = "None"
|
55 |
+
opt.Prediction = "None"
|
56 |
+
opt.Transformer = True
|
57 |
+
opt.sensitive = True
|
58 |
+
opt.imgH = 224
|
59 |
+
opt.imgW = 224
|
60 |
+
opt.data_filtering_off = True
|
61 |
+
opt.TransformerModel= "vitstr_base_patch16_224"
|
62 |
+
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth"
|
63 |
+
opt.batch_size = 1
|
64 |
+
opt.workers = 0
|
65 |
+
opt.scorer = "mean"
|
66 |
+
opt.blackbg = True
|
67 |
+
elif modelName=="parseq":
|
68 |
+
opt.benchmark_all_eval = True
|
69 |
+
opt.Transformation = "None"
|
70 |
+
opt.FeatureExtraction = "None"
|
71 |
+
opt.SequenceModeling = "None"
|
72 |
+
opt.Prediction = "None"
|
73 |
+
opt.Transformer = True
|
74 |
+
opt.sensitive = True
|
75 |
+
opt.imgH = 32
|
76 |
+
opt.imgW = 128
|
77 |
+
opt.data_filtering_off = True
|
78 |
+
opt.batch_size = 1
|
79 |
+
opt.workers = 0
|
80 |
+
opt.scorer = "mean"
|
81 |
+
opt.blackbg = True
|
82 |
+
|
83 |
+
# x = st.slider('Select a value')
|
84 |
+
# st.write(x, 'squared is', x * x)
|
85 |
+
|
86 |
+
image = Image.open('demo_image/demo_ballys.jpg') #Brand logo image (optional)
|
87 |
+
#Create two columns with different width
|
88 |
+
col1, col2 = st.columns( [0.8, 0.2])
|
89 |
+
with col1: # To display the header text using css style
|
90 |
+
st.markdown(""" <style> .font {
|
91 |
+
font-size:35px ; font-family: 'Cooper Black'; color: #FF9633;}
|
92 |
+
</style> """, unsafe_allow_html=True)
|
93 |
+
st.markdown('<p class="font">Upload your photo here...</p>', unsafe_allow_html=True)
|
94 |
+
with col2: # To display brand logo
|
95 |
+
st.image(image, width=150)
|
96 |
+
|
97 |
+
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
|
98 |
+
if uploaded_file is not None:
|
99 |
+
# To read file as bytes:
|
100 |
+
bytes_data = uploaded_file.getvalue()
|
101 |
+
pilImg = Image.open(uploaded_file)
|
102 |
+
|
103 |
+
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0)
|
104 |
+
img1 = orig_img_tensors.to(device)
|
105 |
+
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
|
106 |
+
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0)
|
107 |
+
imgDataDict = {}
|
108 |
+
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
|
109 |
+
if img_numpy.shape[0] == 1:
|
110 |
+
img_numpy = gray2rgb(img_numpy[0])
|
111 |
+
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3)
|
112 |
+
segmOutput = segmentation_fn(img_numpy[0])
|
113 |
+
|
114 |
+
results_dict = {}
|
115 |
+
aveAttr = []
|
116 |
+
aveAttr_charContrib = []
|
117 |
+
target = converter.encode([labels])
|
118 |
+
|
119 |
+
# labels: RONALDO
|
120 |
+
segmDataNP = segmOutput
|
121 |
+
img1.requires_grad = True
|
122 |
+
bgImg = torch.zeros(img1.shape).to(device)
|
123 |
+
|
124 |
+
# preds = model(img1, seqlen=converter.batch_max_length)
|
125 |
+
input = img1
|
126 |
+
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
|
127 |
+
origImgNP = gray2rgb(origImgNP)
|
128 |
+
charOffset = 0
|
129 |
+
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
|
130 |
+
target = converter.encode([labels])
|
131 |
+
|
132 |
+
### Local explanations only
|
133 |
+
collectedAttributions = []
|
134 |
+
for charIdx in range(0, len(labels)):
|
135 |
+
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
|
136 |
+
gtClassNum = target[0][charIdx + charOffset]
|
137 |
+
|
138 |
+
gs = GradientShap(super_pixel_model_singlechar)
|
139 |
+
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
140 |
+
baseline_dist = baseline_dist.to(device)
|
141 |
+
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
142 |
+
collectedAttributions.append(attributions)
|
143 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
144 |
+
# if not torch.isnan(aveAttributions).any():
|
145 |
+
# rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
146 |
+
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
147 |
+
# rankedAttr = gray2rgb(rankedAttr)
|
148 |
+
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
149 |
+
# mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
|
150 |
+
# mplotfig.clear()
|
151 |
+
# plt.close(mplotfig)
|
152 |
+
|
153 |
+
### Local Sampling
|
154 |
+
gs = GradientShap(super_pixel_model)
|
155 |
+
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
156 |
+
baseline_dist = baseline_dist.to(device)
|
157 |
+
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
158 |
+
# if not torch.isnan(attributions).any():
|
159 |
+
# collectedAttributions.append(attributions)
|
160 |
+
# rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
|
161 |
+
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
162 |
+
# rankedAttr = gray2rgb(rankedAttr)
|
163 |
+
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
164 |
+
# mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
|
165 |
+
# mplotfig.clear()
|
166 |
+
# plt.close(mplotfig)
|
167 |
+
|
168 |
+
### Global + Local context
|
169 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
170 |
+
if not torch.isnan(aveAttributions).any():
|
171 |
+
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
172 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
173 |
+
rankedAttr = gray2rgb(rankedAttr)
|
174 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
175 |
+
fig = mplotfig.figure(figsize=(8,8))
|
176 |
+
st.pyplot(fig)
|
177 |
+
# mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
|
178 |
+
# mplotfig.clear()
|
179 |
+
# plt.close(mplotfig)
|
model.py
CHANGED
@@ -33,8 +33,11 @@ import settings
|
|
33 |
class STRScore(nn.Module):
|
34 |
def __init__(self, opt, converter, device, gtStr="", enableSingleCharAttrAve=False, model=None):
|
35 |
super(STRScore, self).__init__()
|
|
|
|
|
36 |
self.enableSingleCharAttrAve = enableSingleCharAttrAve
|
37 |
self.singleChar = -1
|
|
|
38 |
self.opt = opt
|
39 |
self.converter = converter
|
40 |
self.device = device
|
@@ -75,6 +78,8 @@ class STRScore(nn.Module):
|
|
75 |
preds_str = self.converter.decode(preds_index[:, 1:], length_for_pred)
|
76 |
elif settings.MODEL == 'parseq':
|
77 |
preds_str, confidence = self.model.tokenizer.decode(preds)
|
|
|
|
|
78 |
# print("preds_str: ", preds_str)
|
79 |
else:
|
80 |
preds = preds[:, :text_for_loss_length, :]
|
|
|
33 |
class STRScore(nn.Module):
|
34 |
def __init__(self, opt, converter, device, gtStr="", enableSingleCharAttrAve=False, model=None):
|
35 |
super(STRScore, self).__init__()
|
36 |
+
if opt.modelName:
|
37 |
+
settings.MODEL = opt.modelName
|
38 |
self.enableSingleCharAttrAve = enableSingleCharAttrAve
|
39 |
self.singleChar = -1
|
40 |
+
self.recentlyPredStr = None
|
41 |
self.opt = opt
|
42 |
self.converter = converter
|
43 |
self.device = device
|
|
|
78 |
preds_str = self.converter.decode(preds_index[:, 1:], length_for_pred)
|
79 |
elif settings.MODEL == 'parseq':
|
80 |
preds_str, confidence = self.model.tokenizer.decode(preds)
|
81 |
+
self.recentlyPredStr = preds_str[-1]
|
82 |
+
# print("preds_str: ", preds_str)
|
83 |
# print("preds_str: ", preds_str)
|
84 |
else:
|
85 |
preds = preds[:, :text_for_loss_length, :]
|
requirements.txt
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.2.0
|
2 |
+
aiohttp==3.8.1
|
3 |
+
aiosignal==1.2.0
|
4 |
+
anyio==3.5.0
|
5 |
+
argon2-cffi==21.3.0
|
6 |
+
argon2-cffi-bindings==21.2.0
|
7 |
+
asttokens==2.0.5
|
8 |
+
async-timeout==4.0.2
|
9 |
+
attrs==21.4.0
|
10 |
+
Babel==2.9.1
|
11 |
+
backcall==0.2.0
|
12 |
+
beautifulsoup4==4.11.1
|
13 |
+
bleach==4.1.0
|
14 |
+
blinker==1.4
|
15 |
+
Bottleneck==1.3.5
|
16 |
+
brotlipy==0.7.0
|
17 |
+
cachetools==5.2.0
|
18 |
+
certifi==2022.6.15
|
19 |
+
cffi==1.15.0
|
20 |
+
charset-normalizer==2.0.4
|
21 |
+
click==8.1.3
|
22 |
+
cloudpickle==2.0.0
|
23 |
+
colorama==0.4.5
|
24 |
+
cryptography==37.0.1
|
25 |
+
cycler==0.11.0
|
26 |
+
cytoolz==0.11.0
|
27 |
+
dask==2022.7.0
|
28 |
+
debugpy==1.5.1
|
29 |
+
decorator==5.1.1
|
30 |
+
defusedxml==0.7.1
|
31 |
+
einops==0.4.1
|
32 |
+
entrypoints==0.4
|
33 |
+
executing==0.8.3
|
34 |
+
fastjsonschema==2.15.1
|
35 |
+
fonttools==4.25.0
|
36 |
+
frozenlist==1.3.1
|
37 |
+
fsspec==2022.3.0
|
38 |
+
future==0.18.2
|
39 |
+
google-auth==2.11.0
|
40 |
+
google-auth-oauthlib==0.4.6
|
41 |
+
grpcio==1.48.1
|
42 |
+
idna==3.3
|
43 |
+
imageio==2.19.3
|
44 |
+
importlib-metadata==4.11.4
|
45 |
+
importlib-resources==5.2.0
|
46 |
+
ipykernel==6.9.1
|
47 |
+
ipython==8.4.0
|
48 |
+
ipython-genutils==0.2.0
|
49 |
+
ipywidgets==7.6.5
|
50 |
+
jedi==0.18.1
|
51 |
+
Jinja2==3.0.3
|
52 |
+
joblib==1.1.0
|
53 |
+
json5==0.9.6
|
54 |
+
jsonschema==4.4.0
|
55 |
+
jupyter==1.0.0
|
56 |
+
jupyter-client==7.2.2
|
57 |
+
jupyter-console==6.4.3
|
58 |
+
jupyter-core==4.10.0
|
59 |
+
jupyter-server==1.18.1
|
60 |
+
jupyterlab==3.4.4
|
61 |
+
jupyterlab-pygments==0.1.2
|
62 |
+
jupyterlab-server==2.12.0
|
63 |
+
jupyterlab-widgets==1.0.0
|
64 |
+
kiwisolver==1.4.2
|
65 |
+
llvmlite==0.38.1
|
66 |
+
lmdb==1.3.0
|
67 |
+
locket==1.0.0
|
68 |
+
Markdown==3.4.1
|
69 |
+
MarkupSafe==2.1.1
|
70 |
+
matplotlib==3.5.1
|
71 |
+
matplotlib-inline==0.1.2
|
72 |
+
mistune==0.8.4
|
73 |
+
mkl-fft==1.3.1
|
74 |
+
mkl-random==1.2.2
|
75 |
+
mkl-service==2.4.0
|
76 |
+
multidict==6.0.2
|
77 |
+
munkres==1.1.4
|
78 |
+
natsort==8.1.0
|
79 |
+
nb-conda-kernels==2.3.1
|
80 |
+
nbclassic==0.3.5
|
81 |
+
nbclient==0.5.13
|
82 |
+
nbconvert==6.4.4
|
83 |
+
nbformat==5.3.0
|
84 |
+
nest-asyncio==1.5.5
|
85 |
+
networkx==2.8.4
|
86 |
+
nltk==3.6.7
|
87 |
+
notebook==6.4.12
|
88 |
+
numba==0.55.2
|
89 |
+
numexpr==2.8.3
|
90 |
+
numpy==1.22.3
|
91 |
+
oauthlib==3.2.0
|
92 |
+
packaging==21.3
|
93 |
+
pandas==1.4.3
|
94 |
+
pandocfilters==1.5.0
|
95 |
+
parso==0.8.3
|
96 |
+
partd==1.2.0
|
97 |
+
pexpect==4.8.0
|
98 |
+
pickleshare==0.7.5
|
99 |
+
Pillow==9.2.0
|
100 |
+
pip==22.1.2
|
101 |
+
ply==3.11
|
102 |
+
prometheus-client==0.13.1
|
103 |
+
prompt-toolkit==3.0.20
|
104 |
+
protobuf==4.21.5
|
105 |
+
ptyprocess==0.7.0
|
106 |
+
pure-eval==0.2.2
|
107 |
+
pyasn1==0.4.8
|
108 |
+
pyasn1-modules==0.2.7
|
109 |
+
pycparser==2.21
|
110 |
+
pyDeprecate==0.3.2
|
111 |
+
Pygments==2.11.2
|
112 |
+
PyJWT==2.4.0
|
113 |
+
pyOpenSSL==22.0.0
|
114 |
+
pyparsing==3.0.4
|
115 |
+
PyQt5==5.12.3
|
116 |
+
PyQt5-sip==12.11.0
|
117 |
+
PyQtChart==5.12
|
118 |
+
PyQtWebEngine==5.12.1
|
119 |
+
pyrsistent==0.18.0
|
120 |
+
PySocks==1.7.1
|
121 |
+
python-dateutil==2.8.2
|
122 |
+
pytorch-lightning==1.6.3
|
123 |
+
pytorch-wavelets==1.3.0
|
124 |
+
pytz==2022.1
|
125 |
+
pyu2f==0.1.5
|
126 |
+
PyWavelets==1.3.0
|
127 |
+
PyYAML==6.0
|
128 |
+
pyzmq==23.2.0
|
129 |
+
qtconsole==5.3.1
|
130 |
+
QtPy==2.0.1
|
131 |
+
regex==2022.7.25
|
132 |
+
requests==2.28.1
|
133 |
+
requests-oauthlib==1.3.1
|
134 |
+
rsa==4.9
|
135 |
+
scikit-image==0.19.2
|
136 |
+
scikit-learn==1.1.1
|
137 |
+
scipy==1.7.3
|
138 |
+
Send2Trash==1.8.0
|
139 |
+
setuptools==59.5.0
|
140 |
+
sip==6.6.2
|
141 |
+
six==1.16.0
|
142 |
+
slicer==0.0.7
|
143 |
+
sniffio==1.2.0
|
144 |
+
soupsieve==2.3.1
|
145 |
+
stack-data==0.2.0
|
146 |
+
tensorboard==2.10.0
|
147 |
+
tensorboard-data-server==0.6.0
|
148 |
+
tensorboard-plugin-wit==1.8.1
|
149 |
+
terminado==0.13.1
|
150 |
+
testpath==0.6.0
|
151 |
+
threadpoolctl==2.2.0
|
152 |
+
tifffile==2020.10.1
|
153 |
+
timm==0.6.7
|
154 |
+
toml==0.10.2
|
155 |
+
toolz==0.11.2
|
156 |
+
torch==1.10.1
|
157 |
+
torch-summary==1.4.5
|
158 |
+
torchaudio==0.10.1
|
159 |
+
torchmetrics==0.9.3
|
160 |
+
torchvision==0.11.2
|
161 |
+
tornado==6.1
|
162 |
+
tqdm==4.64.0
|
163 |
+
traitlets==5.1.1
|
164 |
+
typing_extensions==4.1.1
|
165 |
+
urllib3==1.26.11
|
166 |
+
validators==0.18.2
|
167 |
+
Wand==0.6.7
|
168 |
+
wcwidth==0.2.5
|
169 |
+
webencodings==0.5.1
|
170 |
+
websocket-client==0.58.0
|
171 |
+
Werkzeug==2.2.2
|
172 |
+
wheel==0.37.1
|
173 |
+
widgetsnbextension==3.5.2
|
174 |
+
yarl==1.7.2
|
175 |
+
zipp==3.8.0
|
settings.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
######### global settings #########
|
2 |
-
MODEL = '
|
3 |
SEGM_DIR = "./datasets/segmentations" # segmentation directory of the real test sets
|
4 |
TARGET_DATASET = "SVTP" # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
|
|
|
1 |
######### global settings #########
|
2 |
+
MODEL = 'parseq' # model arch: vitstr, parseq, srn, abinet, trba, matrn
|
3 |
SEGM_DIR = "./datasets/segmentations" # segmentation directory of the real test sets
|
4 |
TARGET_DATASET = "SVTP" # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
|
str_exp_demo.py
CHANGED
@@ -154,7 +154,7 @@ def acquireSelectivityHit(origImg, attributions, segmentations, model, converter
|
|
154 |
pred = pred.lower()
|
155 |
gt = gt.lower()
|
156 |
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
|
157 |
-
out_of_alphanumeric_case_insensitve = f
|
158 |
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
|
159 |
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
|
160 |
if pred == gt:
|
@@ -189,7 +189,7 @@ def acquire_selectivity_auc(opt, pkl_filename=None):
|
|
189 |
def sampleDemo(opt):
|
190 |
targetDataset = "SVTP"
|
191 |
demoImgDir = "demo_image/"
|
192 |
-
outputDir = "
|
193 |
|
194 |
if not os.path.exists(outputDir):
|
195 |
os.makedirs(outputDir)
|
|
|
154 |
pred = pred.lower()
|
155 |
gt = gt.lower()
|
156 |
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
|
157 |
+
out_of_alphanumeric_case_insensitve = f"[^{alphanumeric_case_insensitve}]"
|
158 |
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
|
159 |
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
|
160 |
if pred == gt:
|
|
|
189 |
def sampleDemo(opt):
|
190 |
targetDataset = "SVTP"
|
191 |
demoImgDir = "demo_image/"
|
192 |
+
outputDir = "demo_image_output/"
|
193 |
|
194 |
if not os.path.exists(outputDir):
|
195 |
os.makedirs(outputDir)
|
str_exp_demo_huggingface.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import settings
|
2 |
+
import captum
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.backends.cudnn as cudnn
|
7 |
+
from utils import get_args
|
8 |
+
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
|
9 |
+
import string
|
10 |
+
import time
|
11 |
+
import sys
|
12 |
+
from dataset import hierarchical_dataset, AlignCollate
|
13 |
+
import validators
|
14 |
+
from model import Model, STRScore
|
15 |
+
from PIL import Image
|
16 |
+
from lime.wrappers.scikit_image import SegmentationAlgorithm
|
17 |
+
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
|
18 |
+
import random
|
19 |
+
import os
|
20 |
+
from skimage.color import gray2rgb
|
21 |
+
import pickle
|
22 |
+
from train_shap_corr import getPredAndConf
|
23 |
+
import re
|
24 |
+
from captum_test import acquire_average_auc, saveAttrData
|
25 |
+
import copy
|
26 |
+
from skimage.color import gray2rgb
|
27 |
+
from matplotlib import pyplot as plt
|
28 |
+
from torchvision import transforms
|
29 |
+
|
30 |
+
device = torch.device('cpu')
|
31 |
+
|
32 |
+
from captum.attr import (
|
33 |
+
GradientShap,
|
34 |
+
DeepLift,
|
35 |
+
DeepLiftShap,
|
36 |
+
IntegratedGradients,
|
37 |
+
LayerConductance,
|
38 |
+
NeuronConductance,
|
39 |
+
NoiseTunnel,
|
40 |
+
Saliency,
|
41 |
+
InputXGradient,
|
42 |
+
GuidedBackprop,
|
43 |
+
Deconvolution,
|
44 |
+
GuidedGradCam,
|
45 |
+
FeatureAblation,
|
46 |
+
ShapleyValueSampling,
|
47 |
+
Lime,
|
48 |
+
KernelShap
|
49 |
+
)
|
50 |
+
|
51 |
+
from captum.metrics import (
|
52 |
+
infidelity,
|
53 |
+
sensitivity_max
|
54 |
+
)
|
55 |
+
|
56 |
+
from captum.attr._utils.visualization import visualize_image_attr
|
57 |
+
|
58 |
+
### Acquire pixelwise attributions and replace them with ranked numbers averaged
|
59 |
+
### across segmentation with the largest contribution having the largest number
|
60 |
+
### and the smallest set to 1, which is the minimum number.
|
61 |
+
### attr - original attribution
|
62 |
+
### segm - image segmentations
|
63 |
+
def rankedAttributionsBySegm(attr, segm):
|
64 |
+
aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm)
|
65 |
+
totalSegm = len(sortedDict.keys()) # total segmentations
|
66 |
+
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
|
67 |
+
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
|
68 |
+
currentRank = totalSegm
|
69 |
+
rankedSegmImg = torch.clone(attr)
|
70 |
+
for totalSegToHide in range(0, len(sortedKeys)):
|
71 |
+
currentSegmentToHide = sortedKeys[totalSegToHide]
|
72 |
+
rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank
|
73 |
+
currentRank -= 1
|
74 |
+
return rankedSegmImg
|
75 |
+
|
76 |
+
### Returns the mean for each segmentation having shape as the same as the input
|
77 |
+
### This function can only one attribution image at a time
|
78 |
+
def averageSegmentsOut(attr, segments):
|
79 |
+
averagedInput = torch.clone(attr)
|
80 |
+
sortedDict = {}
|
81 |
+
for x in np.unique(segments):
|
82 |
+
segmentMean = torch.mean(attr[segments == x][:])
|
83 |
+
sortedDict[x] = float(segmentMean.detach().cpu().numpy())
|
84 |
+
averagedInput[segments == x] = segmentMean
|
85 |
+
return averagedInput, sortedDict
|
86 |
+
|
87 |
+
### Output and save segmentations only for one dataset only
|
88 |
+
def outputSegmOnly(opt):
|
89 |
+
### targetDataset - one dataset only, SVTP-645, CUTE80-288images
|
90 |
+
targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80']
|
91 |
+
segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset)
|
92 |
+
|
93 |
+
if not os.path.exists(segmRootDir):
|
94 |
+
os.makedirs(segmRootDir)
|
95 |
+
|
96 |
+
opt.eval = True
|
97 |
+
### Only IIIT5k_3000
|
98 |
+
if opt.fast_acc:
|
99 |
+
# # To easily compute the total accuracy of our paper.
|
100 |
+
eval_data_list = [targetDataset]
|
101 |
+
else:
|
102 |
+
# The evaluation datasets, dataset order is same with Table 1 in our paper.
|
103 |
+
eval_data_list = [targetDataset]
|
104 |
+
|
105 |
+
### Taken from LIME
|
106 |
+
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
|
107 |
+
max_dist=200, ratio=0.2,
|
108 |
+
random_seed=random.randint(0, 1000))
|
109 |
+
|
110 |
+
for eval_data in eval_data_list:
|
111 |
+
eval_data_path = os.path.join(opt.eval_data, eval_data)
|
112 |
+
AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt)
|
113 |
+
eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt)
|
114 |
+
evaluation_loader = torch.utils.data.DataLoader(
|
115 |
+
eval_data, batch_size=1,
|
116 |
+
shuffle=False,
|
117 |
+
num_workers=int(opt.workers),
|
118 |
+
collate_fn=AlignCollate_evaluation, pin_memory=True)
|
119 |
+
for i, (image_tensors, labels) in enumerate(evaluation_loader):
|
120 |
+
imgDataDict = {}
|
121 |
+
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
|
122 |
+
if img_numpy.shape[0] == 1:
|
123 |
+
img_numpy = gray2rgb(img_numpy[0])
|
124 |
+
# print("img_numpy shape: ", img_numpy.shape) # (224,224,3)
|
125 |
+
segmOutput = segmentation_fn(img_numpy)
|
126 |
+
imgDataDict['segdata'] = segmOutput
|
127 |
+
imgDataDict['label'] = labels[0]
|
128 |
+
outputPickleFile = segmRootDir + "{}.pkl".format(i)
|
129 |
+
with open(outputPickleFile, 'wb') as f:
|
130 |
+
pickle.dump(imgDataDict, f)
|
131 |
+
|
132 |
+
def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring):
|
133 |
+
# print("segmentations unique len: ", np.unique(segmentations))
|
134 |
+
aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
|
135 |
+
sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
|
136 |
+
sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
|
137 |
+
# print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
|
138 |
+
# print("aveSegmentations unique len: ", np.unique(aveSegmentations))
|
139 |
+
# print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
|
140 |
+
# print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
|
141 |
+
# print("aveSegmentations: ", aveSegmentations)
|
142 |
+
|
143 |
+
n_correct = []
|
144 |
+
confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
|
145 |
+
clonedImg = torch.clone(origImg)
|
146 |
+
gt = str(labels)
|
147 |
+
for totalSegToHide in range(0, len(sortedKeys)):
|
148 |
+
### Acquire LIME prediction result
|
149 |
+
currentSegmentToHide = sortedKeys[totalSegToHide]
|
150 |
+
clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
|
151 |
+
pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt]))
|
152 |
+
# To evaluate 'case sensitive model' with alphanumeric and case insensitve setting.
|
153 |
+
if opt.sensitive and opt.data_filtering_off:
|
154 |
+
pred = pred.lower()
|
155 |
+
gt = gt.lower()
|
156 |
+
alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz'
|
157 |
+
out_of_alphanumeric_case_insensitve = f"[^{alphanumeric_case_insensitve}]"
|
158 |
+
pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred)
|
159 |
+
gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt)
|
160 |
+
if pred == gt:
|
161 |
+
n_correct.append(1)
|
162 |
+
else:
|
163 |
+
n_correct.append(0)
|
164 |
+
confScore = confScore[0][0]*100
|
165 |
+
confidenceList.append(confScore)
|
166 |
+
return n_correct, confidenceList
|
167 |
+
|
168 |
+
### Once you have the selectivity_eval_results.pkl file,
|
169 |
+
def acquire_selectivity_auc(opt, pkl_filename=None):
|
170 |
+
if pkl_filename is None:
|
171 |
+
pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR
|
172 |
+
accKeys = []
|
173 |
+
|
174 |
+
with open(pkl_filename, 'rb') as f:
|
175 |
+
selectivity_data = pickle.load(f)
|
176 |
+
|
177 |
+
for resDictIdx, resDict in enumerate(selectivity_data):
|
178 |
+
keylistAcc = []
|
179 |
+
keylistConf = []
|
180 |
+
metricsKeys = resDict.keys()
|
181 |
+
for keyStr in resDict.keys():
|
182 |
+
if "_acc" in keyStr: keylistAcc.append(keyStr)
|
183 |
+
if "_conf" in keyStr: keylistConf.append(keyStr)
|
184 |
+
# Need to check if network correctly predicted the image
|
185 |
+
for metrics_accStr in keylistAcc:
|
186 |
+
if 1 not in resDict[metrics_accStr]: print("resDictIdx")
|
187 |
+
|
188 |
+
# Single directory STRExp explanations output demo
|
189 |
+
def sampleDemo(opt, modelName):
|
190 |
+
targetDataset = "SVTP"
|
191 |
+
demoImgDir = "demo_image/"
|
192 |
+
outputDir = "demo_image_output/"
|
193 |
+
|
194 |
+
if not os.path.exists(outputDir):
|
195 |
+
os.makedirs(outputDir)
|
196 |
+
|
197 |
+
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
|
198 |
+
max_dist=200, ratio=0.2,
|
199 |
+
random_seed=random.randint(0, 1000))
|
200 |
+
|
201 |
+
if modelName=="vitstr":
|
202 |
+
if opt.Transformer:
|
203 |
+
converter = TokenLabelConverter(opt)
|
204 |
+
elif 'CTC' in opt.Prediction:
|
205 |
+
converter = CTCLabelConverter(opt.character)
|
206 |
+
else:
|
207 |
+
converter = AttnLabelConverter(opt.character)
|
208 |
+
opt.num_class = len(converter.character)
|
209 |
+
if opt.rgb:
|
210 |
+
opt.input_channel = 3
|
211 |
+
model_obj = Model(opt)
|
212 |
+
|
213 |
+
model = torch.nn.DataParallel(model_obj).to(device)
|
214 |
+
modelCopy = copy.deepcopy(model)
|
215 |
+
|
216 |
+
""" evaluation """
|
217 |
+
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True)
|
218 |
+
super_pixel_model_singlechar = torch.nn.Sequential(
|
219 |
+
# super_pixler,
|
220 |
+
# numpy2torch_converter,
|
221 |
+
modelCopy,
|
222 |
+
scoring_singlechar
|
223 |
+
).to(device)
|
224 |
+
modelCopy.eval()
|
225 |
+
scoring_singlechar.eval()
|
226 |
+
super_pixel_model_singlechar.eval()
|
227 |
+
|
228 |
+
# Single Char Attribution Averaging
|
229 |
+
# enableSingleCharAttrAve - set to True
|
230 |
+
scoring = STRScore(opt=opt, converter=converter, device=device)
|
231 |
+
super_pixel_model = torch.nn.Sequential(
|
232 |
+
# super_pixler,
|
233 |
+
# numpy2torch_converter,
|
234 |
+
model,
|
235 |
+
scoring
|
236 |
+
).to(device)
|
237 |
+
model.eval()
|
238 |
+
scoring.eval()
|
239 |
+
super_pixel_model.eval()
|
240 |
+
|
241 |
+
elif modelName=="parseq":
|
242 |
+
model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True)
|
243 |
+
# checkpoint = torch.hub.load_state_dict_from_url('https://github.com/baudm/parseq/releases/download/v1.0.0/parseq-bb5792a6.pt', map_location="cpu")
|
244 |
+
# # state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
|
245 |
+
# model.load_state_dict(checkpoint)
|
246 |
+
model = model.to(device)
|
247 |
+
model_obj = model
|
248 |
+
converter = TokenLabelConverter(opt)
|
249 |
+
modelCopy = copy.deepcopy(model)
|
250 |
+
|
251 |
+
""" evaluation """
|
252 |
+
scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy)
|
253 |
+
super_pixel_model_singlechar = torch.nn.Sequential(
|
254 |
+
# super_pixler,
|
255 |
+
# numpy2torch_converter,
|
256 |
+
modelCopy,
|
257 |
+
scoring_singlechar
|
258 |
+
).to(device)
|
259 |
+
modelCopy.eval()
|
260 |
+
scoring_singlechar.eval()
|
261 |
+
super_pixel_model_singlechar.eval()
|
262 |
+
|
263 |
+
# Single Char Attribution Averaging
|
264 |
+
# enableSingleCharAttrAve - set to True
|
265 |
+
scoring = STRScore(opt=opt, converter=converter, device=device, model=model)
|
266 |
+
super_pixel_model = torch.nn.Sequential(
|
267 |
+
# super_pixler,
|
268 |
+
# numpy2torch_converter,
|
269 |
+
model,
|
270 |
+
scoring
|
271 |
+
).to(device)
|
272 |
+
model.eval()
|
273 |
+
scoring.eval()
|
274 |
+
super_pixel_model.eval()
|
275 |
+
|
276 |
+
|
277 |
+
if opt.blackbg:
|
278 |
+
shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32)
|
279 |
+
trainList = np.array(shapImgLs)
|
280 |
+
background = torch.from_numpy(trainList).to(device)
|
281 |
+
|
282 |
+
opt.eval = True
|
283 |
+
for path, subdirs, files in os.walk(demoImgDir):
|
284 |
+
for name in files:
|
285 |
+
nameNoExt = name.split('.')[0]
|
286 |
+
labels = nameNoExt.split("_")[-1]
|
287 |
+
fullfilename = os.path.join(demoImgDir, name) # Value
|
288 |
+
pilImg = Image.open(fullfilename)
|
289 |
+
|
290 |
+
pilImg = pilImg.resize((opt.imgW, opt.imgH))
|
291 |
+
# fullfilename: /data/goo/strattr/attributionData/trba/CUTE80/66_featablt.pkl
|
292 |
+
|
293 |
+
### Single char averaging
|
294 |
+
if modelName == 'vitstr':
|
295 |
+
|
296 |
+
orig_img_tensors = transforms.ToTensor()(pilImg)
|
297 |
+
orig_img_tensors = torch.mean(orig_img_tensors, dim=0).unsqueeze(0).unsqueeze(0)
|
298 |
+
image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
|
299 |
+
imgDataDict = {}
|
300 |
+
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
|
301 |
+
if img_numpy.shape[0] == 1:
|
302 |
+
img_numpy = gray2rgb(img_numpy[0])
|
303 |
+
# print("img_numpy shape: ", img_numpy.shape) # (32,100,3)
|
304 |
+
segmOutput = segmentation_fn(img_numpy)
|
305 |
+
# print("orig_img_tensors shape: ", orig_img_tensors.shape) # (3, 224, 224)
|
306 |
+
# print("orig_img_tensors max: ", orig_img_tensors.max()) # 0.6824 (1)
|
307 |
+
# print("orig_img_tensors min: ", orig_img_tensors.min()) # 0.0235 (0)
|
308 |
+
# sys.exit()
|
309 |
+
|
310 |
+
results_dict = {}
|
311 |
+
aveAttr = []
|
312 |
+
aveAttr_charContrib = []
|
313 |
+
# segmData, labels = segAndLabels[0]
|
314 |
+
target = converter.encode([labels])
|
315 |
+
|
316 |
+
# labels: RONALDO
|
317 |
+
segmDataNP = segmOutput
|
318 |
+
segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
|
319 |
+
# print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
|
320 |
+
segmTensor = segmTensor.to(device)
|
321 |
+
# print("segmTensor shape: ", segmTensor.shape)
|
322 |
+
# img1 = np.asarray(imgPIL.convert('L'))
|
323 |
+
# sys.exit()
|
324 |
+
# img1 = img1 / 255.0
|
325 |
+
# img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
|
326 |
+
img1 = orig_img_tensors.to(device)
|
327 |
+
img1.requires_grad = True
|
328 |
+
bgImg = torch.zeros(img1.shape).to(device)
|
329 |
+
input = img1
|
330 |
+
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
|
331 |
+
origImgNP = gray2rgb(origImgNP)
|
332 |
+
charOffset = 1
|
333 |
+
# preds = model(img1, seqlen=converter.batch_max_length)
|
334 |
+
|
335 |
+
### Local explanations only
|
336 |
+
collectedAttributions = []
|
337 |
+
for charIdx in range(0, len(labels)):
|
338 |
+
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
|
339 |
+
gtClassNum = target[0][charIdx + charOffset]
|
340 |
+
|
341 |
+
### Shapley Value Sampling
|
342 |
+
svs = ShapleyValueSampling(super_pixel_model_singlechar)
|
343 |
+
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
|
344 |
+
attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor)
|
345 |
+
collectedAttributions.append(attributions)
|
346 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
347 |
+
if not torch.isnan(aveAttributions).any():
|
348 |
+
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
349 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
350 |
+
rankedAttr = gray2rgb(rankedAttr)
|
351 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
352 |
+
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
|
353 |
+
mplotfig.clear()
|
354 |
+
plt.close(mplotfig)
|
355 |
+
|
356 |
+
### Shapley Value Sampling
|
357 |
+
svs = ShapleyValueSampling(super_pixel_model)
|
358 |
+
# attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
|
359 |
+
attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
|
360 |
+
if not torch.isnan(attributions).any():
|
361 |
+
collectedAttributions.append(attributions)
|
362 |
+
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
|
363 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
364 |
+
rankedAttr = gray2rgb(rankedAttr)
|
365 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
366 |
+
mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
|
367 |
+
mplotfig.clear()
|
368 |
+
plt.close(mplotfig)
|
369 |
+
|
370 |
+
### Global + Local context
|
371 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
372 |
+
if not torch.isnan(aveAttributions).any():
|
373 |
+
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
374 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
375 |
+
rankedAttr = gray2rgb(rankedAttr)
|
376 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
377 |
+
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
|
378 |
+
mplotfig.clear()
|
379 |
+
plt.close(mplotfig)
|
380 |
+
|
381 |
+
return
|
382 |
+
|
383 |
+
elif modelName == 'parseq':
|
384 |
+
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0)
|
385 |
+
img1 = orig_img_tensors.to(device)
|
386 |
+
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
|
387 |
+
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0)
|
388 |
+
imgDataDict = {}
|
389 |
+
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
|
390 |
+
if img_numpy.shape[0] == 1:
|
391 |
+
img_numpy = gray2rgb(img_numpy[0])
|
392 |
+
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3)
|
393 |
+
segmOutput = segmentation_fn(img_numpy[0])
|
394 |
+
|
395 |
+
results_dict = {}
|
396 |
+
aveAttr = []
|
397 |
+
aveAttr_charContrib = []
|
398 |
+
target = converter.encode([labels])
|
399 |
+
|
400 |
+
# labels: RONALDO
|
401 |
+
segmDataNP = segmOutput
|
402 |
+
img1.requires_grad = True
|
403 |
+
bgImg = torch.zeros(img1.shape).to(device)
|
404 |
+
|
405 |
+
# preds = model(img1, seqlen=converter.batch_max_length)
|
406 |
+
input = img1
|
407 |
+
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
|
408 |
+
origImgNP = gray2rgb(origImgNP)
|
409 |
+
charOffset = 0
|
410 |
+
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
|
411 |
+
target = converter.encode([labels])
|
412 |
+
|
413 |
+
### Local explanations only
|
414 |
+
collectedAttributions = []
|
415 |
+
for charIdx in range(0, len(labels)):
|
416 |
+
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
|
417 |
+
gtClassNum = target[0][charIdx + charOffset]
|
418 |
+
|
419 |
+
gs = GradientShap(super_pixel_model_singlechar)
|
420 |
+
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
421 |
+
baseline_dist = baseline_dist.to(device)
|
422 |
+
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
423 |
+
collectedAttributions.append(attributions)
|
424 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
425 |
+
if not torch.isnan(aveAttributions).any():
|
426 |
+
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
427 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
428 |
+
rankedAttr = gray2rgb(rankedAttr)
|
429 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
430 |
+
mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
|
431 |
+
mplotfig.clear()
|
432 |
+
plt.close(mplotfig)
|
433 |
+
|
434 |
+
### Local Sampling
|
435 |
+
gs = GradientShap(super_pixel_model)
|
436 |
+
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
437 |
+
baseline_dist = baseline_dist.to(device)
|
438 |
+
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
439 |
+
if not torch.isnan(attributions).any():
|
440 |
+
collectedAttributions.append(attributions)
|
441 |
+
rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
|
442 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
443 |
+
rankedAttr = gray2rgb(rankedAttr)
|
444 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
445 |
+
mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
|
446 |
+
mplotfig.clear()
|
447 |
+
plt.close(mplotfig)
|
448 |
+
|
449 |
+
### Global + Local context
|
450 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
451 |
+
if not torch.isnan(aveAttributions).any():
|
452 |
+
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
453 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
454 |
+
rankedAttr = gray2rgb(rankedAttr)
|
455 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
456 |
+
mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
|
457 |
+
mplotfig.clear()
|
458 |
+
plt.close(mplotfig)
|
459 |
+
|
460 |
+
continue
|
461 |
+
|
462 |
+
if __name__ == '__main__':
|
463 |
+
# deleteInf()
|
464 |
+
opt = get_args(is_train=False)
|
465 |
+
|
466 |
+
""" vocab / character number configuration """
|
467 |
+
if opt.sensitive:
|
468 |
+
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
|
469 |
+
|
470 |
+
cudnn.benchmark = True
|
471 |
+
cudnn.deterministic = True
|
472 |
+
# opt.num_gpu = torch.cuda.device_count()
|
473 |
+
|
474 |
+
# combineBestDataXAI(opt)
|
475 |
+
# acquire_average_auc(opt)
|
476 |
+
# acquireSingleCharAttrAve(opt)
|
477 |
+
modelName = "parseq"
|
478 |
+
opt.modelName = modelName
|
479 |
+
opt.eval_data = "datasets/data_lmdb_release/evaluation"
|
480 |
+
|
481 |
+
if modelName=="vitstr":
|
482 |
+
opt.benchmark_all_eval = True
|
483 |
+
opt.Transformation = "None"
|
484 |
+
opt.FeatureExtraction = "None"
|
485 |
+
opt.SequenceModeling = "None"
|
486 |
+
opt.Prediction = "None"
|
487 |
+
opt.Transformer = True
|
488 |
+
opt.sensitive = True
|
489 |
+
opt.imgH = 224
|
490 |
+
opt.imgW = 224
|
491 |
+
opt.data_filtering_off = True
|
492 |
+
opt.TransformerModel= "vitstr_base_patch16_224"
|
493 |
+
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth"
|
494 |
+
opt.batch_size = 1
|
495 |
+
opt.workers = 0
|
496 |
+
opt.scorer = "mean"
|
497 |
+
opt.blackbg = True
|
498 |
+
elif modelName=="parseq":
|
499 |
+
opt.benchmark_all_eval = True
|
500 |
+
opt.Transformation = "None"
|
501 |
+
opt.FeatureExtraction = "None"
|
502 |
+
opt.SequenceModeling = "None"
|
503 |
+
opt.Prediction = "None"
|
504 |
+
opt.Transformer = True
|
505 |
+
opt.sensitive = True
|
506 |
+
opt.imgH = 32
|
507 |
+
opt.imgW = 128
|
508 |
+
opt.data_filtering_off = True
|
509 |
+
opt.batch_size = 1
|
510 |
+
opt.workers = 0
|
511 |
+
opt.scorer = "mean"
|
512 |
+
opt.blackbg = True
|
513 |
+
sampleDemo(opt, modelName)
|
utils.py
CHANGED
@@ -296,11 +296,11 @@ def get_device(verbose=True):
|
|
296 |
return device
|
297 |
|
298 |
|
299 |
-
def get_args(is_train=True):
|
300 |
parser = argparse.ArgumentParser(description='STR')
|
301 |
|
302 |
# for test
|
303 |
-
parser.add_argument('--eval_data',
|
304 |
parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets')
|
305 |
parser.add_argument('--calculate_infer_time', action='store_true', help='calculate inference timing')
|
306 |
parser.add_argument('--flops', action='store_true', help='calculates approx flops (may not work)')
|
@@ -362,11 +362,10 @@ def get_args(is_train=True):
|
|
362 |
|
363 |
choices = ["vitstr_tiny_patch16_224", "vitstr_small_patch16_224", "vitstr_base_patch16_224", "vitstr_tiny_distilled_patch16_224", "vitstr_small_distilled_patch16_224"]
|
364 |
parser.add_argument('--TransformerModel', default=choices[0], help='Which vit/deit transformer model', choices=choices)
|
365 |
-
parser.add_argument('--Transformation', type=str,
|
366 |
-
parser.add_argument('--FeatureExtraction', type=str,
|
367 |
-
|
368 |
-
parser.add_argument('--
|
369 |
-
parser.add_argument('--Prediction', type=str, required=True, help='Prediction stage. None|CTC|Attn')
|
370 |
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
|
371 |
parser.add_argument('--input_channel', type=int, default=1,
|
372 |
help='the number of input channel of Feature extractor')
|
|
|
296 |
return device
|
297 |
|
298 |
|
299 |
+
def get_args(is_train=True, model=None):
|
300 |
parser = argparse.ArgumentParser(description='STR')
|
301 |
|
302 |
# for test
|
303 |
+
parser.add_argument('--eval_data', help='path to evaluation dataset')
|
304 |
parser.add_argument('--benchmark_all_eval', action='store_true', help='evaluate 10 benchmark evaluation datasets')
|
305 |
parser.add_argument('--calculate_infer_time', action='store_true', help='calculate inference timing')
|
306 |
parser.add_argument('--flops', action='store_true', help='calculates approx flops (may not work)')
|
|
|
362 |
|
363 |
choices = ["vitstr_tiny_patch16_224", "vitstr_small_patch16_224", "vitstr_base_patch16_224", "vitstr_tiny_distilled_patch16_224", "vitstr_small_distilled_patch16_224"]
|
364 |
parser.add_argument('--TransformerModel', default=choices[0], help='Which vit/deit transformer model', choices=choices)
|
365 |
+
parser.add_argument('--Transformation', type=str, help='Transformation stage. None|TPS')
|
366 |
+
parser.add_argument('--FeatureExtraction', type=str, help='FeatureExtraction stage. VGG|RCNN|ResNet')
|
367 |
+
parser.add_argument('--SequenceModeling', type=str, help='SequenceModeling stage. None|BiLSTM')
|
368 |
+
parser.add_argument('--Prediction', type=str, help='Prediction stage. None|CTC|Attn')
|
|
|
369 |
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
|
370 |
parser.add_argument('--input_channel', type=int, default=1,
|
371 |
help='the number of input channel of Feature extractor')
|