Spaces:
Build error
Build error
Commit
·
dffa77d
1
Parent(s):
c60f05d
updated app
Browse files
app.py
CHANGED
@@ -1,5 +1,84 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# x = st.slider('Select a value')
|
5 |
# st.write(x, 'squared is', x * x)
|
@@ -17,20 +96,84 @@ with col2: # To display brand logo
|
|
17 |
|
18 |
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
|
19 |
if uploaded_file is not None:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
+
import settings
|
4 |
+
import captum
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.backends.cudnn as cudnn
|
9 |
+
from utils import get_args
|
10 |
+
from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter
|
11 |
+
import string
|
12 |
+
import time
|
13 |
+
import sys
|
14 |
+
from dataset import hierarchical_dataset, AlignCollate
|
15 |
+
import validators
|
16 |
+
from model import Model, STRScore
|
17 |
+
from PIL import Image
|
18 |
+
from lime.wrappers.scikit_image import SegmentationAlgorithm
|
19 |
+
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
|
20 |
+
import random
|
21 |
+
import os
|
22 |
+
from skimage.color import gray2rgb
|
23 |
+
import pickle
|
24 |
+
from train_shap_corr import getPredAndConf
|
25 |
+
import re
|
26 |
+
from captum_test import acquire_average_auc, saveAttrData
|
27 |
+
import copy
|
28 |
+
from skimage.color import gray2rgb
|
29 |
+
from matplotlib import pyplot as plt
|
30 |
+
from torchvision import transforms
|
31 |
+
|
32 |
+
device = torch.device('cpu')
|
33 |
+
opt = get_args(is_train=False)
|
34 |
+
|
35 |
+
""" vocab / character number configuration """
|
36 |
+
if opt.sensitive:
|
37 |
+
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
|
38 |
+
|
39 |
+
cudnn.benchmark = True
|
40 |
+
cudnn.deterministic = True
|
41 |
+
# opt.num_gpu = torch.cuda.device_count()
|
42 |
+
|
43 |
+
# combineBestDataXAI(opt)
|
44 |
+
# acquire_average_auc(opt)
|
45 |
+
# acquireSingleCharAttrAve(opt)
|
46 |
+
modelName = "parseq"
|
47 |
+
opt.modelName = modelName
|
48 |
+
# opt.eval_data = "datasets/data_lmdb_release/evaluation"
|
49 |
+
|
50 |
+
if modelName=="vitstr":
|
51 |
+
opt.benchmark_all_eval = True
|
52 |
+
opt.Transformation = "None"
|
53 |
+
opt.FeatureExtraction = "None"
|
54 |
+
opt.SequenceModeling = "None"
|
55 |
+
opt.Prediction = "None"
|
56 |
+
opt.Transformer = True
|
57 |
+
opt.sensitive = True
|
58 |
+
opt.imgH = 224
|
59 |
+
opt.imgW = 224
|
60 |
+
opt.data_filtering_off = True
|
61 |
+
opt.TransformerModel= "vitstr_base_patch16_224"
|
62 |
+
opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth"
|
63 |
+
opt.batch_size = 1
|
64 |
+
opt.workers = 0
|
65 |
+
opt.scorer = "mean"
|
66 |
+
opt.blackbg = True
|
67 |
+
elif modelName=="parseq":
|
68 |
+
opt.benchmark_all_eval = True
|
69 |
+
opt.Transformation = "None"
|
70 |
+
opt.FeatureExtraction = "None"
|
71 |
+
opt.SequenceModeling = "None"
|
72 |
+
opt.Prediction = "None"
|
73 |
+
opt.Transformer = True
|
74 |
+
opt.sensitive = True
|
75 |
+
opt.imgH = 32
|
76 |
+
opt.imgW = 128
|
77 |
+
opt.data_filtering_off = True
|
78 |
+
opt.batch_size = 1
|
79 |
+
opt.workers = 0
|
80 |
+
opt.scorer = "mean"
|
81 |
+
opt.blackbg = True
|
82 |
|
83 |
# x = st.slider('Select a value')
|
84 |
# st.write(x, 'squared is', x * x)
|
|
|
96 |
|
97 |
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg"])
|
98 |
if uploaded_file is not None:
|
99 |
+
# To read file as bytes:
|
100 |
+
bytes_data = uploaded_file.getvalue()
|
101 |
+
pilImg = Image.open(uploaded_file)
|
102 |
+
|
103 |
+
orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0)
|
104 |
+
img1 = orig_img_tensors.to(device)
|
105 |
+
# image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0
|
106 |
+
image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0)
|
107 |
+
imgDataDict = {}
|
108 |
+
img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only
|
109 |
+
if img_numpy.shape[0] == 1:
|
110 |
+
img_numpy = gray2rgb(img_numpy[0])
|
111 |
+
# print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3)
|
112 |
+
segmOutput = segmentation_fn(img_numpy[0])
|
113 |
+
|
114 |
+
results_dict = {}
|
115 |
+
aveAttr = []
|
116 |
+
aveAttr_charContrib = []
|
117 |
+
target = converter.encode([labels])
|
118 |
+
|
119 |
+
# labels: RONALDO
|
120 |
+
segmDataNP = segmOutput
|
121 |
+
img1.requires_grad = True
|
122 |
+
bgImg = torch.zeros(img1.shape).to(device)
|
123 |
+
|
124 |
+
# preds = model(img1, seqlen=converter.batch_max_length)
|
125 |
+
input = img1
|
126 |
+
origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
|
127 |
+
origImgNP = gray2rgb(origImgNP)
|
128 |
+
charOffset = 0
|
129 |
+
img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1
|
130 |
+
target = converter.encode([labels])
|
131 |
+
|
132 |
+
### Local explanations only
|
133 |
+
collectedAttributions = []
|
134 |
+
for charIdx in range(0, len(labels)):
|
135 |
+
scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
|
136 |
+
gtClassNum = target[0][charIdx + charOffset]
|
137 |
+
|
138 |
+
gs = GradientShap(super_pixel_model_singlechar)
|
139 |
+
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
140 |
+
baseline_dist = baseline_dist.to(device)
|
141 |
+
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
142 |
+
collectedAttributions.append(attributions)
|
143 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
144 |
+
# if not torch.isnan(aveAttributions).any():
|
145 |
+
# rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
146 |
+
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
147 |
+
# rankedAttr = gray2rgb(rankedAttr)
|
148 |
+
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
149 |
+
# mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt))
|
150 |
+
# mplotfig.clear()
|
151 |
+
# plt.close(mplotfig)
|
152 |
+
|
153 |
+
### Local Sampling
|
154 |
+
gs = GradientShap(super_pixel_model)
|
155 |
+
baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW))
|
156 |
+
baseline_dist = baseline_dist.to(device)
|
157 |
+
attributions = gs.attribute(input, baselines=baseline_dist, target=0)
|
158 |
+
# if not torch.isnan(attributions).any():
|
159 |
+
# collectedAttributions.append(attributions)
|
160 |
+
# rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
|
161 |
+
# rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
162 |
+
# rankedAttr = gray2rgb(rankedAttr)
|
163 |
+
# mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
164 |
+
# mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt))
|
165 |
+
# mplotfig.clear()
|
166 |
+
# plt.close(mplotfig)
|
167 |
+
|
168 |
+
### Global + Local context
|
169 |
+
aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
|
170 |
+
if not torch.isnan(aveAttributions).any():
|
171 |
+
rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
|
172 |
+
rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
|
173 |
+
rankedAttr = gray2rgb(rankedAttr)
|
174 |
+
mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn')
|
175 |
+
fig = mplotfig.figure(figsize=(8,8))
|
176 |
+
st.pyplot(fig)
|
177 |
+
# mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt))
|
178 |
+
# mplotfig.clear()
|
179 |
+
# plt.close(mplotfig)
|