global: name: train-abinet phase: train stage: train-super workdir: workdir seed: ~ dataset: train: { roots: ['datasets/data_lmdb_release/training/MJ/MJ_train/', 'datasets/data_lmdb_release/training/MJ/MJ_test/', 'datasets/data_lmdb_release/training/MJ/MJ_valid/', 'datasets/data_lmdb_release/training/ST'], batch_size: 384 } test: { roots: ['datasets/data_lmdb_release/evaluation/SVTP'], batch_size: 1 } data_aug: False multiscales: False num_workers: 0 training: epochs: 10 show_iters: 50 eval_iters: 3000 save_iters: 3000 optimizer: type: Adam true_wd: False wd: 0.0 bn_wd: False clip_grad: 20 lr: 0.0001 args: { betas: !!python/tuple [0.9, 0.999], # for default Adam } scheduler: { periods: [6, 4], gamma: 0.1, } model: name: 'modules_abinet.model_abinet_iter.ABINetIterModel' iter_size: 3 ensemble: '' use_vision: False vision: { checkpoint: pretrained/abinet_vision.pth, loss_weight: 1., attention: 'position', backbone: 'transformer', backbone_ln: 3, } language: { checkpoint: pretrained/abinet_language_model.pth, num_layers: 4, loss_weight: 1., detach: True, use_self_attn: False } alignment: { loss_weight: 1., }