#!/usr/bin/env python3 import typing from enum import Enum from functools import reduce from inspect import signature from typing import Any, Callable, cast, Dict, List, overload, Tuple, Union import numpy as np import torch from captum._utils.typing import ( BaselineType, Literal, TargetType, TensorOrTupleOfTensorsGeneric, TupleOrTensorOrBoolGeneric, ) from torch import device, Tensor from torch.nn import Module class ExpansionTypes(Enum): repeat = 1 repeat_interleave = 2 def safe_div( numerator: Tensor, denom: Union[Tensor, int, float], default_denom: Union[Tensor, int, float] = 1.0, ) -> Tensor: r""" A simple utility function to perform `numerator / denom` if the statement is undefined => result will be `numerator / default_denorm` """ if isinstance(denom, (int, float)): return numerator / (denom if denom != 0 else default_denom) # convert default_denom to tensor if it is float if not torch.is_tensor(default_denom): default_denom = torch.tensor( default_denom, dtype=denom.dtype, device=denom.device ) return numerator / torch.where(denom != 0, denom, default_denom) @typing.overload def _is_tuple(inputs: Tensor) -> Literal[False]: ... @typing.overload def _is_tuple(inputs: Tuple[Tensor, ...]) -> Literal[True]: ... def _is_tuple(inputs: Union[Tensor, Tuple[Tensor, ...]]) -> bool: return isinstance(inputs, tuple) def _validate_target(num_samples: int, target: TargetType) -> None: if isinstance(target, list) or ( isinstance(target, torch.Tensor) and torch.numel(target) > 1 ): assert num_samples == len(target), ( "The number of samples provied in the" "input {} does not match with the number of targets. {}".format( num_samples, len(target) ) ) def _validate_input( inputs: Tuple[Tensor, ...], baselines: Tuple[Union[Tensor, int, float], ...], draw_baseline_from_distrib: bool = False, ) -> None: assert len(inputs) == len(baselines), ( "Input and baseline must have the same " "dimensions, baseline has {} features whereas input has {}.".format( len(baselines), len(inputs) ) ) for input, baseline in zip(inputs, baselines): if draw_baseline_from_distrib: assert ( isinstance(baseline, (int, float)) or input.shape[1:] == baseline.shape[1:] ), ( "The samples in input and baseline batches must have" " the same shape or the baseline corresponding to the" " input tensor must be a scalar." " Found baseline: {} and input: {} ".format(baseline, input) ) else: assert ( isinstance(baseline, (int, float)) or input.shape == baseline.shape or baseline.shape[0] == 1 ), ( "Baseline can be provided as a tensor for just one input and" " broadcasted to the batch or input and baseline must have the" " same shape or the baseline corresponding to each input tensor" " must be a scalar. Found baseline: {} and input: {}".format( baseline, input ) ) def _zeros(inputs: Tuple[Tensor, ...]) -> Tuple[int, ...]: r""" Takes a tuple of tensors as input and returns a tuple that has the same length as `inputs` with each element as the integer 0. """ return tuple(0 if input.dtype is not torch.bool else False for input in inputs) def _format_baseline( baselines: BaselineType, inputs: Tuple[Tensor, ...] ) -> Tuple[Union[Tensor, int, float], ...]: if baselines is None: return _zeros(inputs) if not isinstance(baselines, tuple): baselines = (baselines,) for baseline in baselines: assert isinstance( baseline, (torch.Tensor, int, float) ), "baseline input argument must be either a torch.Tensor or a number \ however {} detected".format( type(baseline) ) return baselines @overload def _format_tensor_into_tuples(inputs: None) -> None: ... @overload def _format_tensor_into_tuples( inputs: Union[Tensor, Tuple[Tensor, ...]] ) -> Tuple[Tensor, ...]: ... def _format_tensor_into_tuples( inputs: Union[None, Tensor, Tuple[Tensor, ...]] ) -> Union[None, Tuple[Tensor, ...]]: if inputs is None: return None if not isinstance(inputs, tuple): assert isinstance( inputs, torch.Tensor ), "`inputs` must have type " "torch.Tensor but {} found: ".format(type(inputs)) inputs = (inputs,) return inputs def _format_inputs(inputs: Any, unpack_inputs: bool = True) -> Any: return ( inputs if (isinstance(inputs, tuple) or isinstance(inputs, list)) and unpack_inputs else (inputs,) ) def _format_float_or_tensor_into_tuples( inputs: Union[float, Tensor, Tuple[Union[float, Tensor], ...]] ) -> Tuple[Union[float, Tensor], ...]: if not isinstance(inputs, tuple): assert isinstance( inputs, (torch.Tensor, float) ), "`inputs` must have type float or torch.Tensor but {} found: ".format( type(inputs) ) inputs = (inputs,) return inputs @overload def _format_additional_forward_args(additional_forward_args: None) -> None: ... @overload def _format_additional_forward_args( additional_forward_args: Union[Tensor, Tuple] ) -> Tuple: ... @overload def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]: ... def _format_additional_forward_args(additional_forward_args: Any) -> Union[None, Tuple]: if additional_forward_args is not None and not isinstance( additional_forward_args, tuple ): additional_forward_args = (additional_forward_args,) return additional_forward_args def _expand_additional_forward_args( additional_forward_args: Any, n_steps: int, expansion_type: ExpansionTypes = ExpansionTypes.repeat, ) -> Union[None, Tuple]: def _expand_tensor_forward_arg( additional_forward_arg: Tensor, n_steps: int, expansion_type: ExpansionTypes = ExpansionTypes.repeat, ) -> Tensor: if len(additional_forward_arg.size()) == 0: return additional_forward_arg if expansion_type == ExpansionTypes.repeat: return torch.cat([additional_forward_arg] * n_steps, dim=0) elif expansion_type == ExpansionTypes.repeat_interleave: return additional_forward_arg.repeat_interleave(n_steps, dim=0) else: raise NotImplementedError( "Currently only `repeat` and `repeat_interleave`" " expansion_types are supported" ) if additional_forward_args is None: return None return tuple( _expand_tensor_forward_arg(additional_forward_arg, n_steps, expansion_type) if isinstance(additional_forward_arg, torch.Tensor) else additional_forward_arg for additional_forward_arg in additional_forward_args ) def _expand_target( target: TargetType, n_steps: int, expansion_type: ExpansionTypes = ExpansionTypes.repeat, ) -> TargetType: if isinstance(target, list): if expansion_type == ExpansionTypes.repeat: return target * n_steps elif expansion_type == ExpansionTypes.repeat_interleave: expanded_target = [] for i in target: expanded_target.extend([i] * n_steps) return cast(Union[List[Tuple[int, ...]], List[int]], expanded_target) else: raise NotImplementedError( "Currently only `repeat` and `repeat_interleave`" " expansion_types are supported" ) elif isinstance(target, torch.Tensor) and torch.numel(target) > 1: if expansion_type == ExpansionTypes.repeat: return torch.cat([target] * n_steps, dim=0) elif expansion_type == ExpansionTypes.repeat_interleave: return target.repeat_interleave(n_steps, dim=0) else: raise NotImplementedError( "Currently only `repeat` and `repeat_interleave`" " expansion_types are supported" ) return target def _expand_feature_mask( feature_mask: Union[Tensor, Tuple[Tensor, ...]], n_samples: int ): is_feature_mask_tuple = _is_tuple(feature_mask) feature_mask = _format_tensor_into_tuples(feature_mask) feature_mask_new = tuple( feature_mask_elem.repeat_interleave(n_samples, dim=0) if feature_mask_elem.size(0) > 1 else feature_mask_elem for feature_mask_elem in feature_mask ) return _format_output(is_feature_mask_tuple, feature_mask_new) def _expand_and_update_baselines( inputs: Tuple[Tensor, ...], n_samples: int, kwargs: dict, draw_baseline_from_distrib: bool = False, ): def get_random_baseline_indices(bsz, baseline): num_ref_samples = baseline.shape[0] return np.random.choice(num_ref_samples, n_samples * bsz).tolist() # expand baselines to match the sizes of input if "baselines" not in kwargs: return baselines = kwargs["baselines"] baselines = _format_baseline(baselines, inputs) _validate_input( inputs, baselines, draw_baseline_from_distrib=draw_baseline_from_distrib ) if draw_baseline_from_distrib: bsz = inputs[0].shape[0] baselines = tuple( baseline[get_random_baseline_indices(bsz, baseline)] if isinstance(baseline, torch.Tensor) else baseline for baseline in baselines ) else: baselines = tuple( baseline.repeat_interleave(n_samples, dim=0) if isinstance(baseline, torch.Tensor) and baseline.shape[0] == input.shape[0] and baseline.shape[0] > 1 else baseline for input, baseline in zip(inputs, baselines) ) # update kwargs with expanded baseline kwargs["baselines"] = baselines def _expand_and_update_additional_forward_args(n_samples: int, kwargs: dict): if "additional_forward_args" not in kwargs: return additional_forward_args = kwargs["additional_forward_args"] additional_forward_args = _format_additional_forward_args(additional_forward_args) if additional_forward_args is None: return additional_forward_args = _expand_additional_forward_args( additional_forward_args, n_samples, expansion_type=ExpansionTypes.repeat_interleave, ) # update kwargs with expanded baseline kwargs["additional_forward_args"] = additional_forward_args def _expand_and_update_target(n_samples: int, kwargs: dict): if "target" not in kwargs: return target = kwargs["target"] target = _expand_target( target, n_samples, expansion_type=ExpansionTypes.repeat_interleave ) # update kwargs with expanded baseline kwargs["target"] = target def _expand_and_update_feature_mask(n_samples: int, kwargs: dict): if "feature_mask" not in kwargs: return feature_mask = kwargs["feature_mask"] if feature_mask is None: return feature_mask = _expand_feature_mask(feature_mask, n_samples) kwargs["feature_mask"] = feature_mask @typing.overload def _format_output( is_inputs_tuple: Literal[True], output: Tuple[Tensor, ...] ) -> Tuple[Tensor, ...]: ... @typing.overload def _format_output( is_inputs_tuple: Literal[False], output: Tuple[Tensor, ...] ) -> Tensor: ... @typing.overload def _format_output( is_inputs_tuple: bool, output: Tuple[Tensor, ...] ) -> Union[Tensor, Tuple[Tensor, ...]]: ... def _format_output( is_inputs_tuple: bool, output: Tuple[Tensor, ...] ) -> Union[Tensor, Tuple[Tensor, ...]]: r""" In case input is a tensor and the output is returned in form of a tuple we take the first element of the output's tuple to match the same shape signatues of the inputs """ assert isinstance(output, tuple), "Output must be in shape of a tuple" assert is_inputs_tuple or len(output) == 1, ( "The input is a single tensor however the output isn't." "The number of output tensors is: {}".format(len(output)) ) return output if is_inputs_tuple else output[0] @typing.overload def _format_outputs( is_multiple_inputs: Literal[False], outputs: List[Tuple[Tensor, ...]] ) -> Union[Tensor, Tuple[Tensor, ...]]: ... @typing.overload def _format_outputs( is_multiple_inputs: Literal[True], outputs: List[Tuple[Tensor, ...]] ) -> List[Union[Tensor, Tuple[Tensor, ...]]]: ... @typing.overload def _format_outputs( is_multiple_inputs: bool, outputs: List[Tuple[Tensor, ...]] ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: ... def _format_outputs( is_multiple_inputs: bool, outputs: List[Tuple[Tensor, ...]] ) -> Union[Tensor, Tuple[Tensor, ...], List[Union[Tensor, Tuple[Tensor, ...]]]]: assert isinstance(outputs, list), "Outputs must be a list" assert is_multiple_inputs or len(outputs) == 1, ( "outputs should contain multiple inputs or have a single output" f"however the number of outputs is: {len(outputs)}" ) return ( [_format_output(len(output) > 1, output) for output in outputs] if is_multiple_inputs else _format_output(len(outputs[0]) > 1, outputs[0]) ) def _run_forward( forward_func: Callable, inputs: Any, target: TargetType = None, additional_forward_args: Any = None, ) -> Tensor: forward_func_args = signature(forward_func).parameters if len(forward_func_args) == 0: output = forward_func() return output if target is None else _select_targets(output, target) # make everything a tuple so that it is easy to unpack without # using if-statements inputs = _format_inputs(inputs) additional_forward_args = _format_additional_forward_args(additional_forward_args) output = forward_func( *(*inputs, *additional_forward_args) if additional_forward_args is not None else inputs ) return _select_targets(output, target) def _select_targets(output: Tensor, target: TargetType) -> Tensor: if target is None: return output num_examples = output.shape[0] dims = len(output.shape) device = output.device if isinstance(target, (int, tuple)): return _verify_select_column(output, target) elif isinstance(target, torch.Tensor): if torch.numel(target) == 1 and isinstance(target.item(), int): return _verify_select_column(output, cast(int, target.item())) elif len(target.shape) == 1 and torch.numel(target) == num_examples: assert dims == 2, "Output must be 2D to select tensor of targets." return torch.gather(output, 1, target.reshape(len(output), 1)) else: raise AssertionError( "Tensor target dimension %r is not valid. %r" % (target.shape, output.shape) ) elif isinstance(target, list): assert len(target) == num_examples, "Target list length does not match output!" if isinstance(target[0], int): assert dims == 2, "Output must be 2D to select tensor of targets." return torch.gather( output, 1, torch.tensor(target, device=device).reshape(len(output), 1) ) elif isinstance(target[0], tuple): return torch.stack( [ output[(i,) + cast(Tuple, targ_elem)] for i, targ_elem in enumerate(target) ] ) else: raise AssertionError("Target element type in list is not valid.") else: raise AssertionError("Target type %r is not valid." % target) def _contains_slice(target: Union[int, Tuple[Union[int, slice], ...]]) -> bool: if isinstance(target, tuple): for index in target: if isinstance(index, slice): return True return False return isinstance(target, slice) def _verify_select_column( output: Tensor, target: Union[int, Tuple[Union[int, slice], ...]] ) -> Tensor: target = (target,) if isinstance(target, int) else target assert ( len(target) <= len(output.shape) - 1 ), "Cannot choose target column with output shape %r." % (output.shape,) return output[(slice(None), *target)] def _verify_select_neuron( layer_output: Tuple[Tensor, ...], selector: Union[int, Tuple[Union[int, slice], ...], Callable], ) -> Tensor: if callable(selector): return selector(layer_output if len(layer_output) > 1 else layer_output[0]) assert len(layer_output) == 1, ( "Cannot select neuron index from layer with multiple tensors," "consider providing a neuron selector function instead." ) selected_neurons = _verify_select_column(layer_output[0], selector) if _contains_slice(selector): return selected_neurons.reshape(selected_neurons.shape[0], -1).sum(1) return selected_neurons def _extract_device( module: Module, hook_inputs: Union[None, Tensor, Tuple[Tensor, ...]], hook_outputs: Union[None, Tensor, Tuple[Tensor, ...]], ) -> device: params = list(module.parameters()) if ( (hook_inputs is None or len(hook_inputs) == 0) and (hook_outputs is None or len(hook_outputs) == 0) and len(params) == 0 ): raise RuntimeError( """Unable to extract device information for the module {}. Both inputs and outputs to the forward hook and `module.parameters()` are empty. The reason that the inputs to the forward hook are empty could be due to the fact that the arguments to that module {} are all named and are passed as named variables to its forward function. """.format( module, module ) ) if hook_inputs is not None and len(hook_inputs) > 0: return hook_inputs[0].device if hook_outputs is not None and len(hook_outputs) > 0: return hook_outputs[0].device return params[0].device def _reduce_list( val_list: List[TupleOrTensorOrBoolGeneric], red_func: Callable[[List], Any] = torch.cat, ) -> TupleOrTensorOrBoolGeneric: """ Applies reduction function to given list. If each element in the list is a Tensor, applies reduction function to all elements of the list, and returns the output Tensor / value. If each element is a boolean, apply any method (or). If each element is a tuple, applies reduction function to corresponding elements of each tuple in the list, and returns tuple of reduction function outputs with length matching the length of tuple val_list[0]. It is assumed that all tuples in the list have the same length and red_func can be applied to all elements in each corresponding position. """ assert len(val_list) > 0, "Cannot reduce empty list!" if isinstance(val_list[0], torch.Tensor): first_device = val_list[0].device return red_func([elem.to(first_device) for elem in val_list]) elif isinstance(val_list[0], bool): return any(val_list) elif isinstance(val_list[0], tuple): final_out = [] for i in range(len(val_list[0])): final_out.append( _reduce_list([val_elem[i] for val_elem in val_list], red_func) ) else: raise AssertionError( "Elements to be reduced can only be" "either Tensors or tuples containing Tensors." ) return tuple(final_out) def _sort_key_list( keys: List[device], device_ids: Union[None, List[int]] = None ) -> List[device]: """ Sorts list of torch devices (keys) by given index list, device_ids. If keys contains only one device, then the list is returned unchanged. If keys contains a device for which the id is not contained in device_ids, then an error is returned. This method is used to identify the order of DataParallel batched devices, given the device ID ordering. """ if len(keys) == 1: return keys id_dict: Dict[int, device] = {} assert device_ids is not None, "Device IDs must be provided with multiple devices." for key in keys: if key.index in id_dict: raise AssertionError("Duplicate CUDA Device ID identified in device list.") id_dict[key.index] = key out_list = [ id_dict[device_id] for device_id in filter(lambda device_id: device_id in id_dict, device_ids) ] assert len(out_list) == len(keys), "Given Device ID List does not match" "devices with computed tensors." return out_list def _flatten_tensor_or_tuple(inp: TensorOrTupleOfTensorsGeneric) -> Tensor: if isinstance(inp, Tensor): return inp.flatten() return torch.cat([single_inp.flatten() for single_inp in inp]) def _get_module_from_name(model: Module, layer_name: str) -> Any: r""" Returns the module (layer) object, given its (string) name in the model. Args: name (str): Module or nested modules name string in self.model Returns: The module (layer) in self.model. """ return reduce(getattr, layer_name.split("."), model) def _register_backward_hook( module: Module, hook: Callable, attr_obj: Any ) -> torch.utils.hooks.RemovableHandle: # Special case for supporting output attributions for neuron methods # This can be removed after deprecation of neuron output attributions # for NeuronDeepLift, NeuronDeconvolution, and NeuronGuidedBackprop # in v0.6.0 if ( hasattr(attr_obj, "skip_new_hook_layer") and attr_obj.skip_new_hook_layer == module ): return module.register_backward_hook(hook) if torch.__version__ >= "1.9": # Only supported for torch >= 1.9 return module.register_full_backward_hook(hook) else: # Fallback for previous versions of PyTorch return module.register_backward_hook(hook)