""" Copyright (c) 2019-present NAVER Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import torch import torch.nn as nn import torch.nn.functional as F import sys import math class STRScore(nn.Module): def __init__(self, config, charsetMapper, postprocessFunc, device, enableSingleCharAttrAve=False): super(STRScore, self).__init__() self.config = config self.charsetMapper = charsetMapper self.postprocess = postprocessFunc self.device = device self.enableSingleCharAttrAve = enableSingleCharAttrAve # singleChar - if >=0, then the output of STRScore will only be a single character # instead of a whole. The char index will be equal to the parameter "singleChar". def setSingleCharOutput(self, singleChar): self.singleChar = singleChar ### Output of ABINET model ### Shape with 1 batchsize: torch.Size([1, 26, 37]) def forward(self, preds): # Acquire predicted text pt_text, _, __ = self.postprocess(preds[0], self.charsetMapper, self.config.model_eval) preds = preds[0]["logits"] # preds shape: torch.Size([50, 26, 37]) # Confidence score bs = preds.shape[0] # ARGMAX calculation sum = torch.FloatTensor([0]*len(preds)).to(self.device) preds_prob = F.softmax(preds, dim=2) preds_max_prob, preds_max_index = preds_prob.max(dim=2) if self.enableSingleCharAttrAve: preds_max_prob = preds_max_prob[:,self.singleChar] preds_max_prob = preds_max_prob.unsqueeze(0) if self.enableSingleCharAttrAve: sum = torch.zeros((bs, len(self.config.character)-1)).to(self.device) # print("preds_max_prob shape: ", preds_max_prob.shape) (1,26) confidence_score_list = [] count = 0 for one_hot_preds, pred, pred_max_prob in zip(preds_prob, pt_text, preds_max_prob): if self.enableSingleCharAttrAve: one_hot = one_hot_preds[self.singleChar, :] sum[count] = one_hot # sum = sum.unsqueeze(0) else: pred_EOS = len(pred) # pred = pred[:pred_EOS] pred_max_prob = pred_max_prob[:pred_EOS] ### Use score of all letters excluding null char # pred_max_prob = pred_max_prob[0:1] ### Use score of first letter only if pred_max_prob.shape[0] == 0: continue if self.config.scorer == "cumprod": confidence_score = pred_max_prob.cumprod(dim=0)[-1] ### Maximum is 1 elif self.config.scorer == "mean": confidence_score = torch.mean(pred_max_prob) ### Maximum is 1 sum[count] += confidence_score count += 1 if self.enableSingleCharAttrAve: pass else: sum = sum.unsqueeze(1) return sum