# -------------------------------------------------------- # Pytorch Faster R-CNN and FPN # Licensed under The MIT License [see LICENSE for details] # Written by Zheqi He and Xinlei Chen, Yixiao Ge # https://github.com/yxgeee/pytorch-FPN/blob/master/lib/nets/resnet_v1.py # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F import math import torch.utils.model_zoo as model_zoo __all__ = [ 'ResNet_FPN', 'ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152'] model_urls = { 'resnet18': 'https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth', 'resnet34': 'https://s3.amazonaws.com/pytorch/models/resnet34-333f7ec4.pth', 'resnet50': 'https://s3.amazonaws.com/pytorch/models/resnet50-19c8e357.pth', 'resnet101': 'https://s3.amazonaws.com/pytorch/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://s3.amazonaws.com/pytorch/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d( inplanes, planes, kernel_size=1, stride=stride, bias=False) # change self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class BuildBlock(nn.Module): def __init__(self, planes=512): super(BuildBlock, self).__init__() self.planes = planes # Top-down layers, use nn.ConvTranspose2d to replace # nn.Conv2d+F.upsample? self.toplayer1 = nn.Conv2d( 2048, planes, kernel_size=1, stride=1, padding=0) # Reduce channels self.toplayer2 = nn.Conv2d( 512, planes, kernel_size=3, stride=1, padding=1) self.toplayer3 = nn.Conv2d( 512, planes, kernel_size=3, stride=1, padding=1) # Lateral layers self.latlayer1 = nn.Conv2d( 1024, planes, kernel_size=1, stride=1, padding=0) self.latlayer2 = nn.Conv2d( 512, planes, kernel_size=1, stride=1, padding=0) def _upsample_add(self, x, y): _, _, H, W = y.size() return F.upsample( x, size=( H, W), mode='bilinear', align_corners=True) + y def forward(self, c3, c4, c5): # Top-down p5 = self.toplayer1(c5) p4 = self._upsample_add(p5, self.latlayer1(c4)) p4 = self.toplayer2(p4) p3 = self._upsample_add(p4, self.latlayer2(c3)) p3 = self.toplayer3(p3) return p3, p4, p5 class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() # the symbol is referred to fots. # Conv1 /2 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # Pool1 /4 # maxpool different from pytorch-resnet, to match tf-faster-rcnn self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer( block, 64, layers[0], stride=1) # Res2 /4 self.layer2 = self._make_layer( block, 128, layers[1], stride=2) # Res3 /8 self.layer3 = self._make_layer( block, 256, layers[2], stride=2) # Res4 /16 # use stride 1 for the last conv4 layer (same as tf-faster-rcnn) self.layer4 = self._make_layer( block, 512, layers[3], stride=2) # Res5 /32 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def resnet18(pretrained=False): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet34(pretrained=False): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3]) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model class ResNet_FPN(nn.Module): def __init__(self, num_layers=50): super(ResNet_FPN, self).__init__() self._num_layers = num_layers self._layers = {} self._init_head_tail() self.out_planes = self.fpn.planes def forward(self, x): c2 = self.head1(x) c3 = self.head2(c2) c4 = self.head3(c3) c5 = self.head4(c4) p3, p4, p5 = self.fpn( c3, c4, c5) # net_conv = [p2, p3, p4, p5] # return p2, [x, self.resnet.conv1(x), c2] return p3 def _init_head_tail(self): # choose different blocks for different number of layers if self._num_layers == 50: self.resnet = resnet50() elif self._num_layers == 101: self.resnet = resnet101() elif self._num_layers == 152: self.resnet = resnet152() else: # other numbers are not supported raise NotImplementedError # Build Building Block for FPN self.fpn = BuildBlock() self.head1 = nn.Sequential( self.resnet.conv1, self.resnet.bn1, self.resnet.relu, self.resnet.maxpool, self.resnet.layer1) # /4 self.head2 = nn.Sequential(self.resnet.layer2) # /8 self.head3 = nn.Sequential(self.resnet.layer3) # /16 self.head4 = nn.Sequential(self.resnet.layer4) # /32 if __name__=='__main__': model = ResNet_FPN() x = torch.randn((2,1,64,256)) y = model(x) print(y.shape)