#!/usr/bin/env python3 import warnings from enum import Enum from typing import Any, Iterable, List, Tuple, Union import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib.figure import Figure from matplotlib.pyplot import axis, figure from mpl_toolkits.axes_grid1 import make_axes_locatable from numpy import ndarray try: from IPython.core.display import display, HTML HAS_IPYTHON = True except ImportError: HAS_IPYTHON = False class ImageVisualizationMethod(Enum): heat_map = 1 blended_heat_map = 2 original_image = 3 masked_image = 4 alpha_scaling = 5 class VisualizeSign(Enum): positive = 1 absolute_value = 2 negative = 3 all = 4 def _prepare_image(attr_visual: ndarray): return np.clip(attr_visual.astype(int), 0, 255) def _normalize_scale(attr: ndarray, scale_factor: float): assert scale_factor != 0, "Cannot normalize by scale factor = 0" if abs(scale_factor) < 1e-5: warnings.warn( "Attempting to normalize by value approximately 0, visualized results" "may be misleading. This likely means that attribution values are all" "close to 0." ) attr_norm = attr / scale_factor return np.clip(attr_norm, -1, 1) def _cumulative_sum_threshold(values: ndarray, percentile: Union[int, float]): # given values should be non-negative assert percentile >= 0 and percentile <= 100, ( "Percentile for thresholding must be " "between 0 and 100 inclusive." ) sorted_vals = np.sort(values.flatten()) cum_sums = np.cumsum(sorted_vals) threshold_id = np.where(cum_sums >= cum_sums[-1] * 0.01 * percentile)[0][0] return sorted_vals[threshold_id] def _normalize_image_attr( attr: ndarray, sign: str, outlier_perc: Union[int, float] = 2 ): attr_combined = np.sum(attr, axis=2) # Choose appropriate signed values and rescale, removing given outlier percentage. if VisualizeSign[sign] == VisualizeSign.all: threshold = _cumulative_sum_threshold(np.abs(attr_combined), 100 - outlier_perc) elif VisualizeSign[sign] == VisualizeSign.positive: attr_combined = (attr_combined > 0) * attr_combined threshold = _cumulative_sum_threshold(attr_combined, 100 - outlier_perc) elif VisualizeSign[sign] == VisualizeSign.negative: attr_combined = (attr_combined < 0) * attr_combined threshold = -1 * _cumulative_sum_threshold( np.abs(attr_combined), 100 - outlier_perc ) elif VisualizeSign[sign] == VisualizeSign.absolute_value: attr_combined = np.abs(attr_combined) threshold = _cumulative_sum_threshold(attr_combined, 100 - outlier_perc) else: raise AssertionError("Visualize Sign type is not valid.") return _normalize_scale(attr_combined, threshold) def visualize_image_attr( attr: ndarray, original_image: Union[None, ndarray] = None, method: str = "heat_map", sign: str = "absolute_value", plt_fig_axis: Union[None, Tuple[figure, axis]] = None, outlier_perc: Union[int, float] = 2, cmap: Union[None, str] = None, alpha_overlay: float = 0.5, show_colorbar: bool = False, title: Union[None, str] = None, fig_size: Tuple[int, int] = (6, 6), use_pyplot: bool = True, ): r""" Visualizes attribution for a given image by normalizing attribution values of the desired sign (positive, negative, absolute value, or all) and displaying them using the desired mode in a matplotlib figure. Args: attr (numpy.array): Numpy array corresponding to attributions to be visualized. Shape must be in the form (H, W, C), with channels as last dimension. Shape must also match that of the original image if provided. original_image (numpy.array, optional): Numpy array corresponding to original image. Shape must be in the form (H, W, C), with channels as the last dimension. Image can be provided either with float values in range 0-1 or int values between 0-255. This is a necessary argument for any visualization method which utilizes the original image. Default: None method (string, optional): Chosen method for visualizing attribution. Supported options are: 1. `heat_map` - Display heat map of chosen attributions 2. `blended_heat_map` - Overlay heat map over greyscale version of original image. Parameter alpha_overlay corresponds to alpha of heat map. 3. `original_image` - Only display original image. 4. `masked_image` - Mask image (pixel-wise multiply) by normalized attribution values. 5. `alpha_scaling` - Sets alpha channel of each pixel to be equal to normalized attribution value. Default: `heat_map` sign (string, optional): Chosen sign of attributions to visualize. Supported options are: 1. `positive` - Displays only positive pixel attributions. 2. `absolute_value` - Displays absolute value of attributions. 3. `negative` - Displays only negative pixel attributions. 4. `all` - Displays both positive and negative attribution values. This is not supported for `masked_image` or `alpha_scaling` modes, since signed information cannot be represented in these modes. Default: `absolute_value` plt_fig_axis (tuple, optional): Tuple of matplotlib.pyplot.figure and axis on which to visualize. If None is provided, then a new figure and axis are created. Default: None outlier_perc (float or int, optional): Top attribution values which correspond to a total of outlier_perc percentage of the total attribution are set to 1 and scaling is performed using the minimum of these values. For sign=`all`, outliers and scale value are computed using absolute value of attributions. Default: 2 cmap (string, optional): String corresponding to desired colormap for heatmap visualization. This defaults to "Reds" for negative sign, "Blues" for absolute value, "Greens" for positive sign, and a spectrum from red to green for all. Note that this argument is only used for visualizations displaying heatmaps. Default: None alpha_overlay (float, optional): Alpha to set for heatmap when using `blended_heat_map` visualization mode, which overlays the heat map over the greyscaled original image. Default: 0.5 show_colorbar (boolean, optional): Displays colorbar for heatmap below the visualization. If given method does not use a heatmap, then a colormap axis is created and hidden. This is necessary for appropriate alignment when visualizing multiple plots, some with colorbars and some without. Default: False title (string, optional): Title string for plot. If None, no title is set. Default: None fig_size (tuple, optional): Size of figure created. Default: (6,6) use_pyplot (boolean, optional): If true, uses pyplot to create and show figure and displays the figure after creating. If False, uses Matplotlib object oriented API and simply returns a figure object without showing. Default: True. Returns: 2-element tuple of **figure**, **axis**: - **figure** (*matplotlib.pyplot.figure*): Figure object on which visualization is created. If plt_fig_axis argument is given, this is the same figure provided. - **axis** (*matplotlib.pyplot.axis*): Axis object on which visualization is created. If plt_fig_axis argument is given, this is the same axis provided. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> net = ImageClassifier() >>> ig = IntegratedGradients(net) >>> # Computes integrated gradients for class 3 for a given image . >>> attribution, delta = ig.attribute(orig_image, target=3) >>> # Displays blended heat map visualization of computed attributions. >>> _ = visualize_image_attr(attribution, orig_image, "blended_heat_map") """ # Create plot if figure, axis not provided if plt_fig_axis is not None: plt_fig, plt_axis = plt_fig_axis else: if use_pyplot: plt_fig, plt_axis = plt.subplots(figsize=fig_size) else: plt_fig = Figure(figsize=fig_size) plt_axis = plt_fig.subplots() if original_image is not None: if np.max(original_image) <= 1.0: original_image = _prepare_image(original_image * 255) else: assert ( ImageVisualizationMethod[method] == ImageVisualizationMethod.heat_map ), "Original Image must be provided for any visualization other than heatmap." # Remove ticks and tick labels from plot. plt_axis.xaxis.set_ticks_position("none") plt_axis.yaxis.set_ticks_position("none") plt_axis.set_yticklabels([]) plt_axis.set_xticklabels([]) plt_axis.grid(b=False) heat_map = None # Show original image if ImageVisualizationMethod[method] == ImageVisualizationMethod.original_image: if len(original_image.shape) > 2 and original_image.shape[2] == 1: original_image = np.squeeze(original_image, axis=2) plt_axis.imshow(original_image) else: # Choose appropriate signed attributions and normalize. norm_attr = _normalize_image_attr(attr, sign, outlier_perc) # Set default colormap and bounds based on sign. if VisualizeSign[sign] == VisualizeSign.all: default_cmap = LinearSegmentedColormap.from_list( "RdWhGn", ["red", "white", "green"] ) vmin, vmax = -1, 1 elif VisualizeSign[sign] == VisualizeSign.positive: default_cmap = "Greens" vmin, vmax = 0, 1 elif VisualizeSign[sign] == VisualizeSign.negative: default_cmap = "Reds" vmin, vmax = 0, 1 elif VisualizeSign[sign] == VisualizeSign.absolute_value: default_cmap = "Blues" vmin, vmax = 0, 1 else: raise AssertionError("Visualize Sign type is not valid.") cmap = cmap if cmap is not None else default_cmap # Show appropriate image visualization. if ImageVisualizationMethod[method] == ImageVisualizationMethod.heat_map: heat_map = plt_axis.imshow(norm_attr, cmap=cmap, vmin=vmin, vmax=vmax) elif ( ImageVisualizationMethod[method] == ImageVisualizationMethod.blended_heat_map ): plt_axis.imshow(np.mean(original_image, axis=2), cmap="gray") heat_map = plt_axis.imshow( norm_attr, cmap=cmap, vmin=vmin, vmax=vmax, alpha=alpha_overlay ) elif ImageVisualizationMethod[method] == ImageVisualizationMethod.masked_image: assert VisualizeSign[sign] != VisualizeSign.all, ( "Cannot display masked image with both positive and negative " "attributions, choose a different sign option." ) plt_axis.imshow( _prepare_image(original_image * np.expand_dims(norm_attr, 2)) ) elif ImageVisualizationMethod[method] == ImageVisualizationMethod.alpha_scaling: assert VisualizeSign[sign] != VisualizeSign.all, ( "Cannot display alpha scaling with both positive and negative " "attributions, choose a different sign option." ) plt_axis.imshow( np.concatenate( [ original_image, _prepare_image(np.expand_dims(norm_attr, 2) * 255), ], axis=2, ) ) else: raise AssertionError("Visualize Method type is not valid.") # Add colorbar. If given method is not a heatmap and no colormap is relevant, # then a colormap axis is created and hidden. This is necessary for appropriate # alignment when visualizing multiple plots, some with heatmaps and some # without. if show_colorbar: axis_separator = make_axes_locatable(plt_axis) colorbar_axis = axis_separator.append_axes("bottom", size="5%", pad=0.1) if heat_map: plt_fig.colorbar(heat_map, orientation="horizontal", cax=colorbar_axis) else: colorbar_axis.axis("off") if title: plt_axis.set_title(title) if use_pyplot: plt.show() return plt_fig, plt_axis def visualize_image_attr_multiple( attr: ndarray, original_image: Union[None, ndarray], methods: List[str], signs: List[str], titles: Union[None, List[str]] = None, fig_size: Tuple[int, int] = (8, 6), use_pyplot: bool = True, **kwargs: Any, ): r""" Visualizes attribution using multiple visualization methods displayed in a 1 x k grid, where k is the number of desired visualizations. Args: attr (numpy.array): Numpy array corresponding to attributions to be visualized. Shape must be in the form (H, W, C), with channels as last dimension. Shape must also match that of the original image if provided. original_image (numpy.array, optional): Numpy array corresponding to original image. Shape must be in the form (H, W, C), with channels as the last dimension. Image can be provided either with values in range 0-1 or 0-255. This is a necessary argument for any visualization method which utilizes the original image. methods (list of strings): List of strings of length k, defining method for each visualization. Each method must be a valid string argument for method to visualize_image_attr. signs (list of strings): List of strings of length k, defining signs for each visualization. Each sign must be a valid string argument for sign to visualize_image_attr. titles (list of strings, optional): List of strings of length k, providing a title string for each plot. If None is provided, no titles are added to subplots. Default: None fig_size (tuple, optional): Size of figure created. Default: (8, 6) use_pyplot (boolean, optional): If true, uses pyplot to create and show figure and displays the figure after creating. If False, uses Matplotlib object oriented API and simply returns a figure object without showing. Default: True. **kwargs (Any, optional): Any additional arguments which will be passed to every individual visualization. Such arguments include `show_colorbar`, `alpha_overlay`, `cmap`, etc. Returns: 2-element tuple of **figure**, **axis**: - **figure** (*matplotlib.pyplot.figure*): Figure object on which visualization is created. If plt_fig_axis argument is given, this is the same figure provided. - **axis** (*matplotlib.pyplot.axis*): Axis object on which visualization is created. If plt_fig_axis argument is given, this is the same axis provided. Examples:: >>> # ImageClassifier takes a single input tensor of images Nx3x32x32, >>> # and returns an Nx10 tensor of class probabilities. >>> net = ImageClassifier() >>> ig = IntegratedGradients(net) >>> # Computes integrated gradients for class 3 for a given image . >>> attribution, delta = ig.attribute(orig_image, target=3) >>> # Displays original image and heat map visualization of >>> # computed attributions side by side. >>> _ = visualize_image_attr_multiple(attribution, orig_image, >>> ["original_image", "heat_map"], ["all", "positive"]) """ assert len(methods) == len(signs), "Methods and signs array lengths must match." if titles is not None: assert len(methods) == len(titles), ( "If titles list is given, length must " "match that of methods list." ) if use_pyplot: plt_fig = plt.figure(figsize=fig_size) else: plt_fig = Figure(figsize=fig_size) plt_axis = plt_fig.subplots(1, len(methods)) # When visualizing one if len(methods) == 1: plt_axis = [plt_axis] for i in range(len(methods)): visualize_image_attr( attr, original_image=original_image, method=methods[i], sign=signs[i], plt_fig_axis=(plt_fig, plt_axis[i]), use_pyplot=False, title=titles[i] if titles else None, **kwargs, ) plt_fig.tight_layout() if use_pyplot: plt.show() return plt_fig, plt_axis # These visualization methods are for text and are partially copied from # experiments conducted by Davide Testuggine at Facebook. class VisualizationDataRecord: r""" A data record for storing attribution relevant information """ __slots__ = [ "word_attributions", "pred_prob", "pred_class", "true_class", "attr_class", "attr_score", "raw_input_ids", "convergence_score", ] def __init__( self, word_attributions, pred_prob, pred_class, true_class, attr_class, attr_score, raw_input_ids, convergence_score, ) -> None: self.word_attributions = word_attributions self.pred_prob = pred_prob self.pred_class = pred_class self.true_class = true_class self.attr_class = attr_class self.attr_score = attr_score self.raw_input_ids = raw_input_ids self.convergence_score = convergence_score def _get_color(attr): # clip values to prevent CSS errors (Values should be from [-1,1]) attr = max(-1, min(1, attr)) if attr > 0: hue = 120 sat = 75 lig = 100 - int(50 * attr) else: hue = 0 sat = 75 lig = 100 - int(-40 * attr) return "hsl({}, {}%, {}%)".format(hue, sat, lig) def format_classname(classname): return '{}'.format(classname) def format_special_tokens(token): if token.startswith("<") and token.endswith(">"): return "#" + token.strip("<>") return token def format_tooltip(item, text): return '
{item}\ {text}\
'.format( item=item, text=text ) def format_word_importances(words, importances): if importances is None or len(importances) == 0: return "" assert len(words) <= len(importances) tags = [""] for word, importance in zip(words, importances[: len(words)]): word = format_special_tokens(word) color = _get_color(importance) unwrapped_tag = ' {word}\ '.format( color=color, word=word ) tags.append(unwrapped_tag) tags.append("") return "".join(tags) def visualize_text( datarecords: Iterable[VisualizationDataRecord], legend: bool = True ) -> "HTML": # In quotes because this type doesn't exist in standalone mode assert HAS_IPYTHON, ( "IPython must be available to visualize text. " "Please run 'pip install ipython'." ) dom = [""] rows = [ "" "" "" "" "" ] for datarecord in datarecords: rows.append( "".join( [ "", format_classname(datarecord.true_class), format_classname( "{0} ({1:.2f})".format( datarecord.pred_class, datarecord.pred_prob ) ), format_classname(datarecord.attr_class), format_classname("{0:.2f}".format(datarecord.attr_score)), format_word_importances( datarecord.raw_input_ids, datarecord.word_attributions ), "", ] ) ) if legend: dom.append( '
' ) dom.append("Legend: ") for value, label in zip([-1, 0, 1], ["Negative", "Neutral", "Positive"]): dom.append( ' {label} '.format( value=_get_color(value), label=label ) ) dom.append("
") dom.append("".join(rows)) dom.append("
True LabelPredicted LabelAttribution LabelAttribution ScoreWord Importance
") html = HTML("".join(dom)) display(html) return html