import torch import torch.nn as nn class Model(nn.Module): def __init__(self, dataset_max_length: int, null_label: int): super().__init__() self.max_length = dataset_max_length + 1 # additional stop token self.null_label = null_label def _get_length(self, logit, dim=-1): """ Greed decoder to obtain length from logit""" out = (logit.argmax(dim=-1) == self.null_label) abn = out.any(dim) out = ((out.cumsum(dim) == 1) & out).max(dim)[1] out = out + 1 # additional end token out = torch.where(abn, out, out.new_tensor(logit.shape[1], device=out.device)) return out @staticmethod def _get_padding_mask(length, max_length): length = length.unsqueeze(-1) grid = torch.arange(0, max_length, device=length.device).unsqueeze(0) return grid >= length @staticmethod def _get_location_mask(sz, device=None): mask = torch.eye(sz, device=device) mask = mask.float().masked_fill(mask == 1, float('-inf')) return mask