import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): def __init__(self, input_size, hidden_size, num_class, num_char_embeddings=256): super().__init__() self.attention_cell = AttentionCell(input_size, hidden_size, num_char_embeddings) self.hidden_size = hidden_size self.num_class = num_class self.generator = nn.Linear(hidden_size, num_class) self.char_embeddings = nn.Embedding(num_class, num_char_embeddings) def forward(self, batch_H, text, max_label_length=25): """ input: batch_H : contextual_feature H = hidden state of encoder. [batch_size x num_steps x num_class] text : the text-index of each image. [batch_size x (max_length+1)]. +1 for [SOS] token. text[:, 0] = [SOS]. output: probability distribution at each step [batch_size x num_steps x num_class] """ batch_size = batch_H.size(0) num_steps = max_label_length + 1 # +1 for [EOS] at end of sentence. output_hiddens = batch_H.new_zeros((batch_size, num_steps, self.hidden_size), dtype=torch.float) hidden = (batch_H.new_zeros((batch_size, self.hidden_size), dtype=torch.float), batch_H.new_zeros((batch_size, self.hidden_size), dtype=torch.float)) if self.training: for i in range(num_steps): char_embeddings = self.char_embeddings(text[:, i]) # hidden : decoder's hidden s_{t-1}, batch_H : encoder's hidden H, char_embeddings : f(y_{t-1}) hidden, alpha = self.attention_cell(hidden, batch_H, char_embeddings) output_hiddens[:, i, :] = hidden[0] # LSTM hidden index (0: hidden, 1: Cell) probs = self.generator(output_hiddens) else: targets = text[0].expand(batch_size) # should be fill with [SOS] token probs = batch_H.new_zeros((batch_size, num_steps, self.num_class), dtype=torch.float) for i in range(num_steps): char_embeddings = self.char_embeddings(targets) hidden, alpha = self.attention_cell(hidden, batch_H, char_embeddings) probs_step = self.generator(hidden[0]) probs[:, i, :] = probs_step _, next_input = probs_step.max(1) targets = next_input return probs # batch_size x num_steps x num_class class AttentionCell(nn.Module): def __init__(self, input_size, hidden_size, num_embeddings): super().__init__() self.i2h = nn.Linear(input_size, hidden_size, bias=False) self.h2h = nn.Linear(hidden_size, hidden_size) # either i2i or h2h should have bias self.score = nn.Linear(hidden_size, 1, bias=False) self.rnn = nn.LSTMCell(input_size + num_embeddings, hidden_size) self.hidden_size = hidden_size def forward(self, prev_hidden, batch_H, char_embeddings): # [batch_size x num_encoder_step x num_channel] -> [batch_size x num_encoder_step x hidden_size] batch_H_proj = self.i2h(batch_H) prev_hidden_proj = self.h2h(prev_hidden[0]).unsqueeze(1) e = self.score(torch.tanh(batch_H_proj + prev_hidden_proj)) # batch_size x num_encoder_step * 1 alpha = F.softmax(e, dim=1) context = torch.bmm(alpha.permute(0, 2, 1), batch_H).squeeze(1) # batch_size x num_channel concat_context = torch.cat([context, char_embeddings], 1) # batch_size x (num_channel + num_embedding) cur_hidden = self.rnn(concat_context, prev_hidden) return cur_hidden, alpha