import numpy class QuantileVector: """ Streaming randomized quantile computation for numpy. Add any amount of data repeatedly via add(data). At any time, quantile estimates (or old-style percentiles) can be read out using quantiles(q) or percentiles(p). Accuracy scales according to resolution: the default is to set resolution to be accurate to better than 0.1%, while limiting storage to about 50,000 samples. Good for computing quantiles of huge data without using much memory. Works well on arbitrary data with probability near 1. Based on the optimal KLL quantile algorithm by Karnin, Lang, and Liberty from FOCS 2016. http://ieee-focs.org/FOCS-2016-Papers/3933a071.pdf """ def __init__(self, depth=1, resolution=24 * 1024, buffersize=None, dtype=None, seed=None): self.resolution = resolution self.depth = depth # Default buffersize: 128 samples (and smaller than resolution). if buffersize is None: buffersize = min(128, (resolution + 7) // 8) self.buffersize = buffersize self.samplerate = 1.0 self.data = [numpy.zeros(shape=(depth, resolution), dtype=dtype)] self.firstfree = [0] self.random = numpy.random.RandomState(seed) self.extremes = numpy.empty(shape=(depth, 2), dtype=dtype) self.extremes.fill(numpy.NaN) self.size = 0 def add(self, incoming): assert len(incoming.shape) == 2 assert incoming.shape[1] == self.depth self.size += incoming.shape[0] # Convert to a flat numpy array. if self.samplerate >= 1.0: self._add_every(incoming) return # If we are sampling, then subsample a large chunk at a time. self._scan_extremes(incoming) chunksize = numpy.ceil[self.buffersize / self.samplerate] for index in range(0, len(incoming), chunksize): batch = incoming[index:index+chunksize] sample = batch[self.random.binomial(1, self.samplerate, len(batch))] self._add_every(sample) def _add_every(self, incoming): supplied = len(incoming) index = 0 while index < supplied: ff = self.firstfree[0] available = self.data[0].shape[1] - ff if available == 0: if not self._shift(): # If we shifted by subsampling, then subsample. incoming = incoming[index:] if self.samplerate >= 0.5: print('SAMPLING') self._scan_extremes(incoming) incoming = incoming[self.random.binomial(1, 0.5, len(incoming - index))] index = 0 supplied = len(incoming) ff = self.firstfree[0] available = self.data[0].shape[1] - ff copycount = min(available, supplied - index) self.data[0][:,ff:ff + copycount] = numpy.transpose( incoming[index:index + copycount,:]) self.firstfree[0] += copycount index += copycount def _shift(self): index = 0 # If remaining space at the current layer is less than half prev # buffer size (rounding up), then we need to shift it up to ensure # enough space for future shifting. while self.data[index].shape[1] - self.firstfree[index] < ( -(-self.data[index-1].shape[1] // 2) if index else 1): if index + 1 >= len(self.data): return self._expand() data = self.data[index][:,0:self.firstfree[index]] data.sort() if index == 0 and self.samplerate >= 1.0: self._update_extremes(data[:,0], data[:,-1]) offset = self.random.binomial(1, 0.5) position = self.firstfree[index + 1] subset = data[:,offset::2] self.data[index + 1][:,position:position + subset.shape[1]] = subset self.firstfree[index] = 0 self.firstfree[index + 1] += subset.shape[1] index += 1 return True def _scan_extremes(self, incoming): # When sampling, we need to scan every item still to get extremes self._update_extremes( numpy.nanmin(incoming, axis=0), numpy.nanmax(incoming, axis=0)) def _update_extremes(self, minr, maxr): self.extremes[:,0] = numpy.nanmin( [self.extremes[:, 0], minr], axis=0) self.extremes[:,-1] = numpy.nanmax( [self.extremes[:, -1], maxr], axis=0) def minmax(self): if self.firstfree[0]: self._scan_extremes(self.data[0][:,:self.firstfree[0]].transpose()) return self.extremes.copy() def _expand(self): cap = self._next_capacity() if cap > 0: # First, make a new layer of the proper capacity. self.data.insert(0, numpy.empty( shape=(self.depth, cap), dtype=self.data[-1].dtype)) self.firstfree.insert(0, 0) else: # Unless we're so big we are just subsampling. assert self.firstfree[0] == 0 self.samplerate *= 0.5 for index in range(1, len(self.data)): # Scan for existing data that needs to be moved down a level. amount = self.firstfree[index] if amount == 0: continue position = self.firstfree[index-1] # Move data down if it would leave enough empty space there # This is the key invariant: enough empty space to fit half # of the previous level's buffer size (rounding up) if self.data[index-1].shape[1] - (amount + position) >= ( -(-self.data[index-2].shape[1] // 2) if (index-1) else 1): self.data[index-1][:,position:position + amount] = ( self.data[index][:,:amount]) self.firstfree[index-1] += amount self.firstfree[index] = 0 else: # Scrunch the data if it would not. data = self.data[index][:,:amount] data.sort() if index == 1: self._update_extremes(data[:,0], data[:,-1]) offset = self.random.binomial(1, 0.5) scrunched = data[:,offset::2] self.data[index][:,:scrunched.shape[1]] = scrunched self.firstfree[index] = scrunched.shape[1] return cap > 0 def _next_capacity(self): cap = numpy.ceil(self.resolution * numpy.power(0.67, len(self.data))) if cap < 2: return 0 return max(self.buffersize, int(cap)) def _weighted_summary(self, sort=True): if self.firstfree[0]: self._scan_extremes(self.data[0][:,:self.firstfree[0]].transpose()) size = sum(self.firstfree) + 2 weights = numpy.empty( shape=(size), dtype='float32') # floating point summary = numpy.empty( shape=(self.depth, size), dtype=self.data[-1].dtype) weights[0:2] = 0 summary[:,0:2] = self.extremes index = 2 for level, ff in enumerate(self.firstfree): if ff == 0: continue summary[:,index:index + ff] = self.data[level][:,:ff] weights[index:index + ff] = numpy.power(2.0, level) index += ff assert index == summary.shape[1] if sort: order = numpy.argsort(summary) summary = summary[numpy.arange(self.depth)[:,None], order] weights = weights[order] return (summary, weights) def quantiles(self, quantiles, old_style=False): if self.size == 0: return numpy.full((self.depth, len(quantiles)), numpy.nan) summary, weights = self._weighted_summary() cumweights = numpy.cumsum(weights, axis=-1) - weights / 2 if old_style: # To be convenient with numpy.percentile cumweights -= cumweights[:,0:1] cumweights /= cumweights[:,-1:] else: cumweights /= numpy.sum(weights, axis=-1, keepdims=True) result = numpy.empty(shape=(self.depth, len(quantiles))) for d in range(self.depth): result[d] = numpy.interp(quantiles, cumweights[d], summary[d]) return result def integrate(self, fun): result = None for level, ff in enumerate(self.firstfree): if ff == 0: continue term = numpy.sum( fun(self.data[level][:,:ff]) * numpy.power(2.0, level), axis=-1) if result is None: result = term else: result += term if result is not None: result /= self.samplerate return result def percentiles(self, percentiles): return self.quantiles(percentiles, old_style=True) def readout(self, count, old_style=True): return self.quantiles( numpy.linspace(0.0, 1.0, count), old_style=old_style) if __name__ == '__main__': import time # An adverarial case: we keep finding more numbers in the middle # as the stream goes on. amount = 10000000 percentiles = 1000 data = numpy.arange(float(amount)) data[1::2] = data[-1::-2] + (len(data) - 1) data /= 2 depth = 50 alldata = data[:,None] + (numpy.arange(depth) * amount)[None, :] actual_sum = numpy.sum(alldata * alldata, axis=0) amt = amount // depth for r in range(depth): numpy.random.shuffle(alldata[r*amt:r*amt+amt,r]) # data[::2] = data[-2::-2] # numpy.random.shuffle(data) starttime = time.time() qc = QuantileVector(depth=depth, resolution=8 * 1024) qc.add(alldata) ro = qc.readout(1001) endtime = time.time() # print 'ro', ro # print ro - numpy.linspace(0, amount, percentiles+1) gt = numpy.linspace(0, amount, percentiles+1)[None,:] + ( numpy.arange(qc.depth) * amount)[:,None] print("Maximum relative deviation among %d perentiles:" % percentiles, ( numpy.max(abs(ro - gt) / amount) * percentiles)) print("Minmax eror %f, %f" % ( max(abs(qc.minmax()[:,0] - numpy.arange(qc.depth) * amount)), max(abs(qc.minmax()[:, -1] - (numpy.arange(qc.depth)+1) * amount + 1)))) print("Integral error:", numpy.max(numpy.abs( qc.integrate(lambda x: x * x) - actual_sum) / actual_sum)) print("Count error: ", (qc.integrate(lambda x: numpy.ones(x.shape[-1]) ) - qc.size) / (0.0 + qc.size)) print("Time", (endtime - starttime))