# Scene Text Recognition Model Hub # Copyright 2022 Darwin Bautista # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Sequence, Any, Optional import torch import torch.nn.functional as F from pytorch_lightning.utilities.types import STEP_OUTPUT from timm.models.helpers import named_apply from torch import Tensor from strhub.models.base import CrossEntropySystem, CTCSystem from strhub.models.utils import init_weights from .model import TRBA as Model class TRBA(CrossEntropySystem): def __init__(self, charset_train: str, charset_test: str, max_label_length: int, batch_size: int, lr: float, warmup_pct: float, weight_decay: float, img_size: Sequence[int], num_fiducial: int, output_channel: int, hidden_size: int, **kwargs: Any) -> None: super().__init__(charset_train, charset_test, batch_size, lr, warmup_pct, weight_decay) self.save_hyperparameters() self.max_label_length = max_label_length img_h, img_w = img_size self.model = Model(img_h, img_w, len(self.tokenizer), num_fiducial, output_channel=output_channel, hidden_size=hidden_size, use_ctc=False) named_apply(partial(init_weights, exclude=['Transformation.LocalizationNetwork.localization_fc2']), self.model) @torch.jit.ignore def no_weight_decay(self): return {'model.Prediction.char_embeddings.weight'} def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor: max_length = self.max_label_length if max_length is None else min(max_length, self.max_label_length) text = images.new_full([1], self.bos_id, dtype=torch.long) return self.model.forward(images, max_length, text) def training_step(self, batch, batch_idx) -> STEP_OUTPUT: images, labels = batch encoded = self.tokenizer.encode(labels, self.device) inputs = encoded[:, :-1] # remove targets = encoded[:, 1:] # remove max_length = encoded.shape[1] - 2 # exclude and from count logits = self.model.forward(images, max_length, inputs) loss = F.cross_entropy(logits.flatten(end_dim=1), targets.flatten(), ignore_index=self.pad_id) self.log('loss', loss) return loss class TRBC(CTCSystem): def __init__(self, charset_train: str, charset_test: str, max_label_length: int, batch_size: int, lr: float, warmup_pct: float, weight_decay: float, img_size: Sequence[int], num_fiducial: int, output_channel: int, hidden_size: int, **kwargs: Any) -> None: super().__init__(charset_train, charset_test, batch_size, lr, warmup_pct, weight_decay) self.save_hyperparameters() self.max_label_length = max_label_length img_h, img_w = img_size self.model = Model(img_h, img_w, len(self.tokenizer), num_fiducial, output_channel=output_channel, hidden_size=hidden_size, use_ctc=True) named_apply(partial(init_weights, exclude=['Transformation.LocalizationNetwork.localization_fc2']), self.model) def forward(self, images: Tensor, max_length: Optional[int] = None) -> Tensor: # max_label_length is unused in CTC prediction return self.model.forward(images, None) def training_step(self, batch, batch_idx) -> STEP_OUTPUT: images, labels = batch loss = self.forward_logits_loss(images, labels)[1] self.log('loss', loss) return loss