import os import time import string import argparse import re import validators import sys import torch import torch.backends.cudnn as cudnn import torch.utils.data import torch.nn.functional as F import numpy as np from nltk.metrics.distance import edit_distance import pickle from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset from model import Model, STRScore from utils import get_args, AccuracyMeter import matplotlib.pyplot as plt import settings device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def getPredAndConf(opt, model, scoring, image, converter, labels): batch_size = image.size(0) length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) text_for_pred = torch.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0).to(device) if not opt.Transformer: text_for_loss, length_for_loss = converter.encode(labels, batch_max_length=opt.batch_max_length) if settings.MODEL=="vitstr": target = converter.encode(labels) preds = model(image, text=target, seqlen=converter.batch_max_length) confScore = scoring(preds) confScore = confScore.detach().cpu().numpy() _, preds_index = preds.topk(1, dim=-1, largest=True, sorted=True) preds_index = preds_index.view(-1, converter.batch_max_length) length_for_pred = torch.IntTensor([converter.batch_max_length - 1] * batch_size).to(device) preds_str = converter.decode(preds_index[:, 1:], length_for_pred) preds_str = preds_str[0] preds_str = preds_str[:preds_str.find('[s]')] elif settings.MODEL=="trba": preds = model(image) confScore = scoring(preds) _, preds_index = preds.max(2) preds_str = converter.decode(preds_index, length_for_pred) # print("preds_str: ", preds_str) # ['ronaldo[s] preds_str = preds_str[0] preds_str = preds_str[:preds_str.find('[s]')] elif settings.MODEL=="srn": target = converter.encode(labels) preds = model(image, None) _, preds_index = preds[2].max(2) confScore = scoring(preds) confScore = confScore.detach().cpu().numpy() length_for_pred = torch.IntTensor([opt.batch_max_length] * batch_size).to(device) # length_for_pred = torch.IntTensor([converter.batch_max_length - 1] * batch_size).to(device) preds_str = converter.decode(preds_index, length_for_pred) preds_str = preds_str[0] # preds_str = preds_str[:preds_str.find('[s]')] preds = preds[2] elif settings.MODEL=="parseq": target = converter.encode(labels) preds = model(image) predStr, confidence = model.tokenizer.decode(preds) confScore = scoring(preds) confScore = confScore.detach().cpu().numpy() # _, preds_index = preds.topk(1, dim=-1, largest=True, sorted=True) # preds_index = preds_index.view(-1, converter.batch_max_length) # # length_for_pred = torch.IntTensor([converter.batch_max_length - 1] * batch_size).to(device) # preds_str = converter.decode(preds_index[:, 0:], length_for_pred) preds_str = predStr[0] # preds_str = preds_str[:preds_str.find('[s]')] # pred = pred[:pred_EOS] return preds_str, confScore