import os import sys import re import six import math import lmdb import torch import copy import random import pickle from augmentation.weather import Fog, Snow, Frost from augmentation.warp import Curve, Distort, Stretch from augmentation.geometry import Rotate, Perspective, Shrink, TranslateX, TranslateY from augmentation.pattern import VGrid, HGrid, Grid, RectGrid, EllipseGrid from augmentation.noise import GaussianNoise, ShotNoise, ImpulseNoise, SpeckleNoise from augmentation.blur import GaussianBlur, DefocusBlur, MotionBlur, GlassBlur, ZoomBlur from augmentation.camera import Contrast, Brightness, JpegCompression, Pixelate from augmentation.weather import Fog, Snow, Frost, Rain, Shadow from augmentation.process import Posterize, Solarize, Invert, Equalize, AutoContrast, Sharpness, Color from natsort import natsorted from PIL import Image import PIL.ImageOps import numpy as np from torch.utils.data import Dataset, ConcatDataset, Subset from torch._utils import _accumulate import torchvision.transforms as transforms import torchvision.transforms.functional as TF import random class Batch_Balanced_Dataset(object): def __init__(self, opt): """ Modulate the data ratio in the batch. For example, when select_data is "MJ-ST" and batch_ratio is "0.5-0.5", the 50% of the batch is filled with MJ and the other 50% of the batch is filled with ST. """ if not os.path.exists(f'./saved_models/{opt.exp_name}/'): os.makedirs(f'./saved_models/{opt.exp_name}/') log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a') dashed_line = '-' * 80 print(dashed_line) log.write(dashed_line + '\n') print(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}') log.write(f'dataset_root: {opt.train_data}\nopt.select_data: {opt.select_data}\nopt.batch_ratio: {opt.batch_ratio}\n') assert len(opt.select_data) == len(opt.batch_ratio) _AlignCollate = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt) self.data_loader_list = [] self.dataloader_iter_list = [] batch_size_list = [] Total_batch_size = 0 notSelectiveVal = True if opt.selective_sample_str != '': notSelectiveVal = False for selected_d, batch_ratio_d in zip(opt.select_data, opt.batch_ratio): _batch_size = max(round(opt.batch_size * float(batch_ratio_d)), 1) print(dashed_line) log.write(dashed_line + '\n') _dataset, _dataset_log = hierarchical_dataset(root=opt.train_data, opt=opt, notSelective=notSelectiveVal, select_data=[selected_d]) total_number_dataset = len(_dataset) log.write(_dataset_log) """ The total number of data can be modified with opt.total_data_usage_ratio. ex) opt.total_data_usage_ratio = 1 indicates 100% usage, and 0.2 indicates 20% usage. See 4.2 section in our paper. """ number_dataset = int(total_number_dataset * float(opt.total_data_usage_ratio)) dataset_split = [number_dataset, total_number_dataset - number_dataset] indices = range(total_number_dataset) _dataset, _ = [Subset(_dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(dataset_split), dataset_split)] selected_d_log = f'num total samples of {selected_d}: {total_number_dataset} x {opt.total_data_usage_ratio} (total_data_usage_ratio) = {len(_dataset)}\n' selected_d_log += f'num samples of {selected_d} per batch: {opt.batch_size} x {float(batch_ratio_d)} (batch_ratio) = {_batch_size}' print(selected_d_log) log.write(selected_d_log + '\n') batch_size_list.append(str(_batch_size)) Total_batch_size += _batch_size _data_loader = torch.utils.data.DataLoader( _dataset, batch_size=_batch_size, shuffle=True, num_workers=int(opt.workers), collate_fn=_AlignCollate, pin_memory=True) self.data_loader_list.append(_data_loader) self.dataloader_iter_list.append(iter(_data_loader)) Total_batch_size_log = f'{dashed_line}\n' batch_size_sum = '+'.join(batch_size_list) Total_batch_size_log += f'Total_batch_size: {batch_size_sum} = {Total_batch_size}\n' Total_batch_size_log += f'{dashed_line}' opt.batch_size = Total_batch_size print(Total_batch_size_log) log.write(Total_batch_size_log + '\n') log.close() def get_batch(self): balanced_batch_images = [] balanced_batch_texts = [] for i, data_loader_iter in enumerate(self.dataloader_iter_list): try: image, text = data_loader_iter.next() balanced_batch_images.append(image) balanced_batch_texts += text except StopIteration: self.dataloader_iter_list[i] = iter(self.data_loader_list[i]) image, text = self.dataloader_iter_list[i].next() balanced_batch_images.append(image) balanced_batch_texts += text except ValueError: pass balanced_batch_images = torch.cat(balanced_batch_images, 0) return balanced_batch_images, balanced_batch_texts ### notSelective - when False, LMDB dataset loader goes to the routine of randomly ### sampling indices to match --selective_sample_str, else it will no execute the code in the while loop ### and just do the normal VITSTR code def hierarchical_dataset(root, opt, notSelective=True, select_data='/', segmRootDir=None, maxImages=None): """ select_data='/' contains all sub-directory of root directory """ dataset_list = [] dataset_log = f'dataset_root: {root}\t dataset: {select_data[0]}' print(dataset_log) dataset_log += '\n' for dirpath, dirnames, filenames in os.walk(root+'/'): if not dirnames: select_flag = False for selected_d in select_data: if selected_d in dirpath: select_flag = True break if select_flag: if segmRootDir is None: dataset = LmdbDataset(dirpath, opt, notSelective, maxImages=maxImages) else: dataset = LMDBSegmentationDataset(dirpath, opt, notSelective, segmRootDir=segmRootDir, maxImages=maxImages) sub_dataset_log = f'sub-directory:\t/{os.path.relpath(dirpath, root)}\t num samples: {len(dataset)}' print(sub_dataset_log) dataset_log += f'{sub_dataset_log}\n' dataset_list.append(dataset) concatenated_dataset = ConcatDataset(dataset_list) return concatenated_dataset, dataset_log class ValidDataset(Dataset): ### validPklData - pickle containing mapping of validIdx to original train/test idx ### knnDataRoot - root dir to open pickle file for knn, with forward slash ### knnCount - max number of knn from 0-knnCount, not necessarily the same number as ### inside the pickle knns ### typeSet - if 'train' or 'test' ### offsetStartIdx - start index of dataset to sample (0 to N-1), where N is size of valid test set ### offsetEndIdx - end index of dataset to sample (0 to N-1), where N is size of valid test set ### actual size of this dataset will be offsetStartIdx - offsetEndIdx def __init__(self, validPklData, lmdbDataset, typeSet, knnDataRoot, knnCount=None, offsetStartIdx=None, offsetEndIdx=None): self.validPklData = validPklData self.lmdbDataset = lmdbDataset self.typeSet = typeSet self.knnCount = knnCount self.totalValidImgs = len(validPklData) self.knnDataRoot = knnDataRoot ### this function is only for the test dataloader, remember to set batch size to one self.currentIdx = None self.knnPklData = None self.offsetStartIdx = None if offsetStartIdx is not None: self.totalValidImgs = offsetEndIdx - offsetStartIdx self.offsetStartIdx = offsetStartIdx ### this function is purposely created for the trainset dataloader ### call this function to load new pickle file for knn for training set ### be sure to call this function before looping over the dataloader again ### This function also applies offsetting for the test index num i def setCurrentTestNumKNN(self, testValidIdx): knnPklFile = self.knnDataRoot + "test" + str(testValidIdx + self.offsetStartIdx) + "knn.pkl" with open(knnPklFile, 'rb') as f: ### this data is a list of indices with index 0 nearest to the textValidIdx ### according to FAISS KNN self.knnPklData = pickle.load(f) self.totalValidImgs = self.knnCount ### index should be the same number thrown by __getitem__ function ### this function will only work properly if the batch size of testdataloader is equal to one def getValidPklIdx(self): return self.currentIdx def __len__(self): return self.totalValidImgs def __getitem__(self, index): if self.typeSet == 'train': data, label = self.lmdbDataset[self.validPklData[self.knnPklData[index]]] elif self.typeSet == 'test': if self.offsetStartIdx is not None: index = index + self.offsetStartIdx self.currentIdx = index data, label = self.lmdbDataset[self.validPklData[index]] else: assert(False) return data, label class NShotDataset(Dataset): ### infPKLFile - the influence file containing the validTrainIdx list def __init__(self, infPKLData, validTrainPklData, lmdbDataset): self.infPKLData = infPKLData self.totalDataImg = len(infPKLData) self.validTrainPklData = validTrainPklData self.lmdbDataset = lmdbDataset def __len__(self): return self.totalDataImg def __getitem__(self, index): data, label = self.lmdbDataset[self.validTrainPklData[self.infPKLData[index]]] return data, label class LmdbDataset(Dataset): def __init__(self, root, opt, notSelective, maxImages=None): self.root = root self.opt = opt if self.opt.eval == False: self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx) random.shuffle(self.currentInfluenceLS) self.notSelective = notSelective self.selective_sample_ls = set([]) self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False) if not self.env: print('cannot create lmdb from %s' % (root)) sys.exit(0) with self.env.begin(write=False) as txn: nSamples = int(txn.get('num-samples'.encode())) if maxImages is not None: nSamples = min(nSamples, maxImages) self.nSamples = nSamples if self.opt.data_filtering_off: # for fast check or benchmark evaluation with no filtering self.filtered_index_list = [index + 1 for index in range(self.nSamples)] else: """ Filtering part If you want to evaluate IC15-2077 & CUTE datasets which have special character labels, use --data_filtering_off and only evaluate on alphabets and digits. see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192 And if you want to evaluate them with the model trained with --sensitive option, use --sensitive and --data_filtering_off, see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144 """ self.filtered_index_list = [] for index in range(self.nSamples): index += 1 # lmdb starts with 1 label_key = 'label-%09d'.encode() % index label = txn.get(label_key).decode('utf-8') if len(label) > self.opt.batch_max_length: # print(f'The length of the label is longer than max_length: length # {len(label)}, {label} in dataset {self.root}') continue # By default, images containing characters which are not in opt.character are filtered. # You can add [UNK] token to `opt.character` in utils.py instead of this filtering. out_of_char = f'[^{self.opt.character}]' if re.search(out_of_char, label.lower()): continue self.filtered_index_list.append(index) self.nSamples = len(self.filtered_index_list) def __len__(self): return self.nSamples def __getitem__(self, index): assert index <= len(self), 'index range error' ### Used for influence function training if self.opt.eval == False: index = self.currentInfluenceLS.pop(len(self.currentInfluenceLS)-1) if len(self.currentInfluenceLS) <= 0: self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx) random.shuffle(self.currentInfluenceLS) while True: index = self.filtered_index_list[index] if self.opt.max_selective_list != -1: if len(self.selective_sample_ls) >= self.opt.max_selective_list: self.selective_sample_ls.clear() with self.env.begin(write=False) as txn: label_key = 'label-%09d'.encode() % index label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output if self.opt.selective_sample_str != '' and not self.notSelective: if self.opt.ignore_case_sensitivity: if label.lower() != self.opt.selective_sample_str.lower(): ### Reloop self.selective_sample_ls.add(index) while True: index = random.randint(0, len(self)-1) if index not in self.selective_sample_ls: break continue else: if label != self.opt.selective_sample_str: ### Reloop self.selective_sample_ls.add(index) while True: index = random.randint(0, len(self)-1) if index not in self.selective_sample_ls: break continue img_key = 'image-%09d'.encode() % index imgbuf = txn.get(img_key) buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) try: if self.opt.rgb: img = Image.open(buf).convert('RGB') # for color image else: img = Image.open(buf).convert('L') except IOError: print(f'Corrupted image for {index}') # make dummy image and dummy label for corrupted image. if self.opt.rgb: img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) else: img = Image.new('L', (self.opt.imgW, self.opt.imgH)) label = '[dummy_label]' if not self.opt.sensitive: label = label.lower() # We only train and evaluate on alphanumerics (or pre-defined character set in train.py) out_of_char = f'[^{self.opt.character}]' label = re.sub(out_of_char, '', label) break return (img, label) class RawDataset(Dataset): def __init__(self, root, opt): self.opt = opt self.image_path_list = [] for dirpath, dirnames, filenames in os.walk(root): for name in filenames: _, ext = os.path.splitext(name) ext = ext.lower() if ext == '.jpg' or ext == '.jpeg' or ext == '.png': self.image_path_list.append(os.path.join(dirpath, name)) self.image_path_list = natsorted(self.image_path_list) self.nSamples = len(self.image_path_list) def __len__(self): return self.nSamples def __getitem__(self, index): try: if self.opt.rgb: img = Image.open(self.image_path_list[index]).convert('RGB') # for color image else: img = Image.open(self.image_path_list[index]).convert('L') except IOError: print(f'Corrupted image for {index}') # make dummy image and dummy label for corrupted image. if self.opt.rgb: img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) else: img = Image.new('L', (self.opt.imgW, self.opt.imgH)) return (img, self.image_path_list[index]) def isless(prob=0.5): return np.random.uniform(0,1) < prob class DataAugment(object): ''' Supports with and without data augmentation ''' def __init__(self, opt): self.opt = opt if not opt.eval: self.process = [Posterize(), Solarize(), Invert(), Equalize(), AutoContrast(), Sharpness(), Color()] self.camera = [Contrast(), Brightness(), JpegCompression(), Pixelate()] self.pattern = [VGrid(), HGrid(), Grid(), RectGrid(), EllipseGrid()] self.noise = [GaussianNoise(), ShotNoise(), ImpulseNoise(), SpeckleNoise()] self.blur = [GaussianBlur(), DefocusBlur(), MotionBlur(), GlassBlur(), ZoomBlur()] self.weather = [Fog(), Snow(), Frost(), Rain(), Shadow()] self.noises = [self.blur, self.noise, self.weather] self.processes = [self.camera, self.process] self.warp = [Curve(), Distort(), Stretch()] self.geometry = [Rotate(), Perspective(), Shrink()] self.isbaseline_aug = False # rand augment if self.opt.isrand_aug: self.augs = [self.process, self.camera, self.noise, self.blur, self.weather, self.pattern, self.warp, self.geometry] # semantic augment elif self.opt.issemantic_aug: self.geometry = [Rotate(), Perspective(), Shrink()] self.noise = [GaussianNoise()] self.blur = [MotionBlur()] self.augs = [self.noise, self.blur, self.geometry] self.isbaseline_aug = True # pp-ocr augment elif self.opt.islearning_aug: self.geometry = [Rotate(), Perspective()] self.noise = [GaussianNoise()] self.blur = [MotionBlur()] self.warp = [Distort()] self.augs = [self.warp, self.noise, self.blur, self.geometry] self.isbaseline_aug = True # scatter augment elif self.opt.isscatter_aug: self.geometry = [Shrink()] self.warp = [Distort()] self.augs = [self.warp, self.geometry] self.baseline_aug = True # rotation augment elif self.opt.isrotation_aug: self.geometry = [Rotate()] self.augs = [self.geometry] self.isbaseline_aug = True self.scale = False if opt.Transformer else True def __call__(self, img): ''' Must call img.copy() if pattern, Rain or Shadow is used ''' img = img.resize((self.opt.imgW, self.opt.imgH), Image.BICUBIC) if self.opt.eval or isless(self.opt.intact_prob): pass elif self.opt.isshap_aug: img = self.shap_aug(img) elif self.opt.isrand_aug or self.isbaseline_aug: img = self.rand_aug(img) # individual augment can also be selected elif self.opt.issel_aug: img = self.sel_aug(img) img = transforms.ToTensor()(img) if self.scale: img.sub_(0.5).div_(0.5) return img def rand_aug(self, img): augs = np.random.choice(self.augs, self.opt.augs_num, replace=False) for aug in augs: index = np.random.randint(0, len(aug)) op = aug[index] mag = np.random.randint(0, 3) if self.opt.augs_mag is None else self.opt.augs_mag if type(op).__name__ == "Rain" or type(op).__name__ == "Grid": img = op(img.copy(), mag=mag) else: img = op(img, mag=mag) return img def shap_aug(self, img): weatherProb = 0.094624746 warpProb = 0.204524008 geometryProb = 0.332274202 noiseProb = 0.477033377 cameraProb = 0.57329097 patternProb = 0.743824929 processProb = 0.845809948 blurProb = 0.946237465 noCorruptProb = 1 prob = 1. iscurve = False corrProb = random.uniform(0, 1) if corrProb >= 0 and corrProb < weatherProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.weather)) op = self.weather[index] if type(op).__name__ == "Rain": #or "Grid" in type(op).__name__ : img = op(img.copy(), mag=mag, prob=prob) else: img = op(img, mag=mag, prob=prob) elif corrProb >= weatherProb and corrProb < warpProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.warp)) op = self.warp[index] if type(op).__name__ == "Curve": iscurve = True img = op(img, mag=mag, prob=prob) elif corrProb >= warpProb and corrProb < geometryProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.geometry)) op = self.geometry[index] if type(op).__name__ == "Rotate": img = op(img, iscurve=iscurve, mag=mag, prob=prob) else: img = op(img, mag=mag, prob=prob) elif corrProb >= geometryProb and corrProb < noiseProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.noise)) op = self.noise[index] img = op(img, mag=mag, prob=prob) elif corrProb >= noiseProb and corrProb < cameraProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.camera)) op = self.camera[index] img = op(img, mag=mag, prob=prob) elif corrProb >= cameraProb and corrProb < patternProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.pattern)) op = self.pattern[index] img = op(img.copy(), mag=mag, prob=prob) elif corrProb >= patternProb and corrProb < processProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.process)) op = self.process[index] img = op(img, mag=mag, prob=prob) elif corrProb >= processProb and corrProb < blurProb: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.blur)) op = self.blur[index] img = op(img, mag=mag, prob=prob) elif corrProb >= blurProb and corrProb <= noCorruptProb: pass return img def sel_aug(self, img): prob = 1. if self.opt.process: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.process)) op = self.process[index] img = op(img, mag=mag, prob=prob) if self.opt.noise: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.noise)) op = self.noise[index] img = op(img, mag=mag, prob=prob) if self.opt.blur: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.blur)) op = self.blur[index] img = op(img, mag=mag, prob=prob) if self.opt.weather: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.weather)) op = self.weather[index] if type(op).__name__ == "Rain": #or "Grid" in type(op).__name__ : img = op(img.copy(), mag=mag, prob=prob) else: img = op(img, mag=mag, prob=prob) if self.opt.camera: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.camera)) op = self.camera[index] img = op(img, mag=mag, prob=prob) if self.opt.pattern: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.pattern)) op = self.pattern[index] img = op(img.copy(), mag=mag, prob=prob) iscurve = False if self.opt.warp: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.warp)) op = self.warp[index] if type(op).__name__ == "Curve": iscurve = True img = op(img, mag=mag, prob=prob) if self.opt.geometry: mag = np.random.randint(self.opt.min_rand, self.opt.max_rand) index = np.random.randint(0, len(self.geometry)) op = self.geometry[index] if type(op).__name__ == "Rotate": img = op(img, iscurve=iscurve, mag=mag, prob=prob) else: img = op(img, mag=mag, prob=prob) return img class ResizeNormalize(object): def __init__(self, size, interpolation=Image.BICUBIC): self.size = size self.interpolation = interpolation self.toTensor = transforms.ToTensor() def __call__(self, img): img = img.resize(self.size, self.interpolation) img = self.toTensor(img) img.sub_(0.5).div_(0.5) return img class NormalizePAD(object): def __init__(self, max_size, PAD_type='right'): self.toTensor = transforms.ToTensor() self.max_size = max_size self.max_width_half = math.floor(max_size[2] / 2) self.PAD_type = PAD_type def __call__(self, img): img = self.toTensor(img) img.sub_(0.5).div_(0.5) c, h, w = img.size() Pad_img = torch.FloatTensor(*self.max_size).fill_(0) Pad_img[:, :, :w] = img # right pad if self.max_size[2] != w: # add border Pad Pad_img[:, :, w:] = img[:, :, w - 1].unsqueeze(2).expand(c, h, self.max_size[2] - w) return Pad_img class AlignCollate(object): def __init__(self, imgH=32, imgW=100, keep_ratio_with_pad=False, opt=None): self.imgH = imgH self.imgW = imgW self.keep_ratio_with_pad = keep_ratio_with_pad self.opt = opt def __call__(self, batch): # print("type batch: ", type(batch)) # print("type batch[0]: ", type(batch[0])) batch = filter(lambda x: x is not None, batch) images, labels = zip(*batch) if self.keep_ratio_with_pad: # same concept with 'Rosetta' paper resized_max_w = self.imgW input_channel = 3 if images[0].mode == 'RGB' else 1 transform = NormalizePAD((input_channel, self.imgH, resized_max_w)) resized_images = [] for image in images: w, h = image.size ratio = w / float(h) if math.ceil(self.imgH * ratio) > self.imgW: resized_w = self.imgW else: resized_w = math.ceil(self.imgH * ratio) resized_image = image.resize((resized_w, self.imgH), Image.BICUBIC) resized_images.append(transform(resized_image)) # resized_image.save('./image_test/%d_test.jpg' % w) image_tensors = torch.cat([t.unsqueeze(0) for t in resized_images], 0) else: transform = DataAugment(self.opt) #i = 0 #for image in images: # transform(image) # if i == 1: # exit(0) # else: # i = i + 1 image_tensors = [transform(image) for image in images] image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0) #else: # transform = ResizeNormalize((self.imgW, self.imgH)) # image_tensors = [transform(image) for image in images] # image_tensors = torch.cat([t.unsqueeze(0) for t in image_tensors], 0) return image_tensors, labels class STRCharSegmDataset(Dataset): ### imgRoot - above the ./images folder ### minCharNum - set to 0 to deactivate. If greater than 0, this dataset will only output ### images >= minCharNum def __init__(self, annotFile, imgRoot, transforms, minCharNum=0,\ charNum=-1, charToQuery=None): self.transforms = transforms self.minCharNum = minCharNum with open(annotFile) as file: self.lines = file.readlines() self.filteredLines = [] for lineStr in self.lines: splitStr = lineStr.split() gtLabel = splitStr[-1] if self.minCharNum > 0 and len(gtLabel) >= self.minCharNum: if charNum != -1 and gtLabel[charNum] == charToQuery: self.filteredLines.append(lineStr) self.totalItems = len(self.filteredLines) self.imgRoot = imgRoot def __len__(self): return self.totalItems def __getitem__(self, index): lineStr = self.filteredLines[index] splitStr = lineStr.split() imgFilename = splitStr[0] gtLabel = splitStr[-1] imgPIL = Image.open(os.path.join(self.imgRoot, imgFilename)).convert('L') imgPIL = self.transforms(imgPIL) return imgPIL, gtLabel ### Class simplifying the LMDB reader class MyLMDBReader(Dataset): ### indexMap - pass here the file created that maps indices from ### limitedCharIdx ---> fullLMDBIdx ### Should be of format = "char1_N" assumed to be getting only labels ### where the first char is capital N. char1 is the first char. ### maxImages - set this to a number to reduce dataset size def __init__(self, root, opt, indexMap=None, charIdx=None, maxImages=None): self.root = root self.opt = opt self.env = lmdb.open(root, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False) self.indexMapList = None if indexMap is not None: with open(indexMap, 'rb') as f: self.indexMapList = pickle.load(f)[charIdx] ### type list lesserSize = min(len(self.indexMapList), maxImages) self.indexMapList = self.indexMapList[:lesserSize] if not self.env: print('cannot create lmdb from %s' % (root)) sys.exit(0) with self.env.begin(write=False) as txn: self.nSamples = int(txn.get('num-samples'.encode())) if self.opt.data_filtering_off: # for fast check or benchmark evaluation with no filtering self.filtered_index_list = [index + 1 for index in range(self.nSamples)] else: """ Filtering part If you want to evaluate IC15-2077 & CUTE datasets which have special character labels, use --data_filtering_off and only evaluate on alphabets and digits. see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L190-L192 And if you want to evaluate them with the model trained with --sensitive option, use --sensitive and --data_filtering_off, see https://github.com/clovaai/deep-text-recognition-benchmark/blob/dff844874dbe9e0ec8c5a52a7bd08c7f20afe704/test.py#L137-L144 """ self.filtered_index_list = [] for index in range(self.nSamples): index += 1 # lmdb starts with 1 label_key = 'label-%09d'.encode() % index label = txn.get(label_key).decode('utf-8') if len(label) > self.opt.batch_max_length: # print(f'The length of the label is longer than max_length: length # {len(label)}, {label} in dataset {self.root}') continue # By default, images containing characters which are not in opt.character are filtered. # You can add [UNK] token to `opt.character` in utils.py instead of this filtering. out_of_char = f'[^{self.opt.character}]' if re.search(out_of_char, label.lower()): continue self.filtered_index_list.append(index) self.nSamples = len(self.filtered_index_list) if self.indexMapList is not None: self.nSamples = len(self.indexMapList) def __len__(self): return self.nSamples def __getitem__(self, index): ### Acquire mapped index of filtered char only dataset if self.indexMapList is not None: index = self.indexMapList[index] # assert index <= len(self), 'index range error' while True: index = self.filtered_index_list[index] with self.env.begin(write=False) as txn: label_key = 'label-%09d'.encode() % index label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output img_key = 'image-%09d'.encode() % index imgbuf = txn.get(img_key) buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) try: if self.opt.rgb: img = Image.open(buf).convert('RGB') # for color image else: img = Image.open(buf).convert('L') except IOError: print(f'Corrupted image for {index}') # make dummy image and dummy label for corrupted image. if self.opt.rgb: img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) else: img = Image.new('L', (self.opt.imgW, self.opt.imgH)) label = '[dummy_label]' if not self.opt.sensitive: label = label.lower() # We only train and evaluate on alphanumerics (or pre-defined character set in train.py) out_of_char = f'[^{self.opt.character}]' label = re.sub(out_of_char, '', label) break return (img, label) class LMDBSegmentationDataset(LmdbDataset): ### segmRootDir - if not None, def __init__(self, root, opt, notSelective, segmRootDir, maxImages=None): super().__init__(root, opt, notSelective, maxImages=maxImages) self.segmRootDir = segmRootDir def __getitem__(self, index): originalIdx = index assert index <= len(self), 'index range error' ### Used for influence function training if self.opt.eval == False: index = self.currentInfluenceLS.pop(len(self.currentInfluenceLS)-1) if len(self.currentInfluenceLS) <= 0: self.currentInfluenceLS = copy.deepcopy(self.opt.influence_idx) random.shuffle(self.currentInfluenceLS) while True: index = self.filtered_index_list[index] if self.opt.max_selective_list != -1: if len(self.selective_sample_ls) >= self.opt.max_selective_list: self.selective_sample_ls.clear() with self.env.begin(write=False) as txn: label_key = 'label-%09d'.encode() % index label = txn.get(label_key).decode('utf-8') ### label - raw utf8 string output if self.opt.selective_sample_str != '' and not self.notSelective: if self.opt.ignore_case_sensitivity: if label.lower() != self.opt.selective_sample_str.lower(): ### Reloop self.selective_sample_ls.add(index) while True: index = random.randint(0, len(self)-1) if index not in self.selective_sample_ls: break continue else: if label != self.opt.selective_sample_str: ### Reloop self.selective_sample_ls.add(index) while True: index = random.randint(0, len(self)-1) if index not in self.selective_sample_ls: break continue img_key = 'image-%09d'.encode() % index imgbuf = txn.get(img_key) buf = six.BytesIO() buf.write(imgbuf) buf.seek(0) try: if self.opt.rgb: img = Image.open(buf).convert('RGB') # for color image else: img = Image.open(buf).convert('L') except IOError: print(f'Corrupted image for {index}') # make dummy image and dummy label for corrupted image. if self.opt.rgb: img = Image.new('RGB', (self.opt.imgW, self.opt.imgH)) else: img = Image.new('L', (self.opt.imgW, self.opt.imgH)) label = '[dummy_label]' if not self.opt.sensitive: label = label.lower() # We only train and evaluate on alphanumerics (or pre-defined character set in train.py) out_of_char = f'[^{self.opt.character}]' label = re.sub(out_of_char, '', label) break ### Acquire segmentations with open(self.segmRootDir + "{}.pkl".format(originalIdx), 'rb') as f: segmData = pickle.load(f) label = (segmData, label) return (img, label) def tensor2im(image_tensor, imtype=np.uint8): image_numpy = image_tensor.cpu().float().numpy() if image_numpy.shape[0] == 1: image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 return image_numpy.astype(imtype) def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path)