import numpy as np from PIL import Image from .corruptions import * corruption_tuple = (gaussian_noise, shot_noise, impulse_noise, defocus_blur, glass_blur, motion_blur, zoom_blur, snow, frost, fog, brightness, contrast, elastic_transform, pixelate, jpeg_compression, speckle_noise, gaussian_blur, spatter, saturate) corruption_dict = {corr_func.__name__: corr_func for corr_func in corruption_tuple} def corrupt(x, severity=1, corruption_name=None, corruption_number=-1): """ :param x: image to corrupt; a 224x224x3 numpy array in [0, 255] :param severity: strength with which to corrupt x; an integer in (0, 5] :param corruption_name: specifies which corruption function to call; must be one of 'gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur', 'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate', 'jpeg_compression', 'speckle_noise', 'gaussian_blur', 'spatter', 'saturate'; the last four are validation functions :param corruption_number: the position of the corruption_name in the above list; an integer in [0, 18]; useful for easy looping; 15, 16, 17, 18 are validation corruption numbers :return: the image x corrupted by a corruption function at the given severity; same shape as input """ if corruption_name: x_corrupted = corruption_dict[corruption_name](Image.fromarray(x), severity) elif corruption_number != -1: x_corrupted = corruption_tuple[corruption_number](Image.fromarray(x), severity) else: raise ValueError("Either corruption_name or corruption_number must be passed") return np.uint8(x_corrupted)