import torch import torch.nn as nn from fastai.vision import * from .model_vision import BaseVision from .model_language import BCNLanguage from .model_semantic_visual_backbone_feature import BaseSemanticVisual_backbone_feature class MATRN(nn.Module): def __init__(self, config): super().__init__() self.iter_size = ifnone(config.model_iter_size, 1) self.test_bh = ifnone(config.test_bh, None) self.max_length = config.dataset_max_length + 1 # additional stop token self.vision = BaseVision(config) self.language = BCNLanguage(config) self.semantic_visual = BaseSemanticVisual_backbone_feature(config) # def forward(self, images, *args): def forward(self, images, texts=None): v_res = self.vision(images) a_res = v_res all_l_res, all_a_res = [], [] for _ in range(self.iter_size): tokens = torch.softmax(a_res['logits'], dim=-1) lengths = a_res['pt_lengths'] lengths.clamp_(2, self.max_length) l_res = self.language(tokens, lengths) all_l_res.append(l_res) lengths_l = l_res['pt_lengths'] lengths_l.clamp_(2, self.max_length) v_attn_input = v_res['attn_scores'].clone().detach() l_logits_input = None texts_input = None a_res = self.semantic_visual(l_res['feature'], v_res['backbone_feature'], lengths_l=lengths_l, v_attn=v_attn_input, l_logits=l_logits_input, texts=texts_input, training=self.training) a_v_res = {'logits': a_res['v_logits'], 'pt_lengths': a_res['pt_v_lengths'], 'loss_weight': a_res['loss_weight'], 'name': 'alignment'} all_a_res.append(a_v_res) a_s_res = {'logits': a_res['s_logits'], 'pt_lengths': a_res['pt_s_lengths'], 'loss_weight': a_res['loss_weight'], 'name': 'alignment'} all_a_res.append(a_s_res) all_a_res.append(a_res) if self.training: return all_a_res, all_l_res, v_res else: if self.test_bh is None: return a_res, all_l_res[-1], v_res elif self.test_bh == 'final': return a_res, all_l_res[-1], v_res elif self.test_bh == 'semantic': return all_a_res[-2], all_l_res[-1], v_res elif self.test_bh == 'visual': return all_a_res[-3], all_l_res[-1], v_res else: raise NotImplementedError