import torch import torch.nn as nn import torchvision import sys import math # from config import get_args # global_args = get_args(sys.argv[1:]) def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) def get_sinusoid_encoding(n_position, feat_dim, wave_length=10000): # [n_position] positions = torch.arange(0, n_position)#.cuda() # [feat_dim] dim_range = torch.arange(0, feat_dim)#.cuda() dim_range = torch.pow(wave_length, 2 * (dim_range // 2) / feat_dim) # [n_position, feat_dim] angles = positions.unsqueeze(1) / dim_range.unsqueeze(0) angles = angles.float() angles[:, 0::2] = torch.sin(angles[:, 0::2]) angles[:, 1::2] = torch.cos(angles[:, 1::2]) return angles class AsterBlock(nn.Module): def __init__(self, inplanes, planes, stride=1, downsample=None): super(AsterBlock, self).__init__() self.conv1 = conv1x1(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet_ASTER(nn.Module): """For aster or crnn borrowed from: https://github.com/ayumiymk/aster.pytorch """ def __init__(self, in_channels=1, out_channel=512, n_group=1): super(ResNet_ASTER, self).__init__() self.n_group = n_group in_channels = in_channels self.layer0 = nn.Sequential( nn.Conv2d(in_channels, 32, kernel_size=(3, 3), stride=1, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True)) self.inplanes = 32 self.layer1 = self._make_layer(32, 3, [2, 2]) # [16, 50] self.layer2 = self._make_layer(64, 4, [2, 2]) # [8, 25] self.layer3 = self._make_layer(128, 6, [2, 2]) # [4, 25] self.layer4 = self._make_layer(256, 6, [1, ]) # [2, 25] self.layer5 = self._make_layer(out_channel, 3, [1, 1]) # [1, 25] for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, planes, blocks, stride): downsample = None if stride != [1, 1] or self.inplanes != planes: downsample = nn.Sequential( conv1x1(self.inplanes, planes, stride), nn.BatchNorm2d(planes)) layers = [] layers.append(AsterBlock(self.inplanes, planes, stride, downsample)) self.inplanes = planes for _ in range(1, blocks): layers.append(AsterBlock(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x0 = self.layer0(x) x1 = self.layer1(x0) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) x5 = self.layer5(x4) return x5 def numel(model): return sum(p.numel() for p in model.parameters()) if __name__ == "__main__": x = torch.randn(3, 1, 64, 256) net = ResNet_ASTER() encoder_feat = net(x) print(encoder_feat.size()) # 3*512*h/4*w/4 num_params = numel(net) print(f'Number of parameters: {num_params}')