import torch.nn as nn from torchvision.models.resnet import BasicBlock class ResNet_FeatureExtractor(nn.Module): """ FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """ def __init__(self, input_channel, output_channel=512): super().__init__() self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3]) def forward(self, input): return self.ConvNet(input) class ResNet(nn.Module): def __init__(self, input_channel, output_channel, block, layers): super().__init__() self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel] self.inplanes = int(output_channel / 8) self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16), kernel_size=3, stride=1, padding=1, bias=False) self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16)) self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn0_2 = nn.BatchNorm2d(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0]) self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[ 0], kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.output_channel_block[0]) self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1) self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[ 1], kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(self.output_channel_block[1]) self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1)) self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1) self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[ 2], kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(self.output_channel_block[2]) self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1) self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ 3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False) self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3]) self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ 3], kernel_size=2, stride=1, padding=0, bias=False) self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3]) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv0_1(x) x = self.bn0_1(x) x = self.relu(x) x = self.conv0_2(x) x = self.bn0_2(x) x = self.relu(x) x = self.maxpool1(x) x = self.layer1(x) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool2(x) x = self.layer2(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.maxpool3(x) x = self.layer3(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.layer4(x) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu(x) x = self.conv4_2(x) x = self.bn4_2(x) x = self.relu(x) return x