Spaces:
Configuration error
Configuration error
File size: 7,784 Bytes
a3806ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Copyright 2023 Natural Synthetics Inc. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from io import BytesIO
import PIL
from PIL import ImageSequence, Image
import requests
import os
import numpy as np
import imageio
def get_image(img_path) -> PIL.Image.Image:
if img_path.startswith("http"):
return PIL.Image.open(requests.get(img_path, stream=True).raw)
if os.path.exists(img_path):
return Image.open(img_path)
raise Exception("File not found")
def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes:
with BytesIO() as output_buffer:
# Save the first image
images[0].save(output_buffer,
format='GIF',
save_all=True,
append_images=images[1:],
duration=duration,
loop=0) # 0 means the GIF will loop indefinitely
# Get the byte array from the buffer
gif_bytes = output_buffer.getvalue()
return gif_bytes
def save_as_gif(images: List, file_path: str, duration: int = 1000):
with open(file_path, "wb") as f:
f.write(images_to_gif_bytes(images, duration))
def images_to_mp4_bytes(images: List[Image.Image], duration: int = 1000) -> bytes:
with BytesIO() as output_buffer:
with imageio.get_writer(output_buffer, format='mp4', fps=1/(duration/1000)) as writer:
for img in images:
writer.append_data(np.array(img))
mp4_bytes = output_buffer.getvalue()
return mp4_bytes
def save_as_mp4(images: List[Image.Image], file_path: str, duration: int = 1000):
with open(file_path, "wb") as f:
f.write(images_to_mp4_bytes(images, duration))
def scale_aspect_fill(img, new_width, new_height):
new_width = int(new_width)
new_height = int(new_height)
original_width, original_height = img.size
ratio_w = float(new_width) / original_width
ratio_h = float(new_height) / original_height
if ratio_w > ratio_h:
# It must be fixed by width
resize_width = new_width
resize_height = round(original_height * ratio_w)
else:
# Fixed by height
resize_width = round(original_width * ratio_h)
resize_height = new_height
img_resized = img.resize((resize_width, resize_height), Image.LANCZOS)
# Calculate cropping boundaries and do crop
left = (resize_width - new_width) / 2
top = (resize_height - new_height) / 2
right = (resize_width + new_width) / 2
bottom = (resize_height + new_height) / 2
img_cropped = img_resized.crop((left, top, right, bottom))
return img_cropped
def extract_gif_frames_from_midpoint(image: Union[str, PIL.Image.Image], fps: int=8, target_duration: int=1000) -> list:
# Load the GIF
image = get_image(image) if type(image) is str else image
frames = []
estimated_frame_time = None
# some gifs contain the duration - others don't
# so if there is a duration we will grab it otherwise we will fall back
for frame in ImageSequence.Iterator(image):
frames.append(frame.copy())
if 'duration' in frame.info:
frame_info_duration = frame.info['duration']
if frame_info_duration > 0:
estimated_frame_time = frame_info_duration
if estimated_frame_time is None:
if len(frames) <= 16:
# assume it's 8fps
estimated_frame_time = 1000 // 8
else:
# assume it's 15 fps
estimated_frame_time = 70
if len(frames) < fps:
raise ValueError(f"fps of {fps} is too small for this gif as it only has {len(frames)} frames.")
skip = len(frames) // fps
upper_bound_index = len(frames) - 1
best_indices = [x for x in range(0, len(frames), skip)][:fps]
offset = int(upper_bound_index - best_indices[-1]) // 2
best_indices = [x + offset for x in best_indices]
best_duration = (best_indices[-1] - best_indices[0]) * estimated_frame_time
while True:
skip -= 1
if skip == 0:
break
indices = [x for x in range(0, len(frames), skip)][:fps]
# center the indices, so we sample the middle of the gif...
offset = int(upper_bound_index - indices[-1]) // 2
if offset == 0:
# can't shift
break
indices = [x + offset for x in indices]
# is the new duration closer to the target than last guess?
duration = (indices[-1] - indices[0]) * estimated_frame_time
if abs(duration - target_duration) > abs(best_duration - target_duration):
break
best_indices = indices
best_duration = duration
return [frames[index] for index in best_indices]
def get_crop_coordinates(old_size: tuple, new_size: tuple) -> tuple:
"""
Calculate the crop coordinates after scaling an image to fit a new size.
:param old_size: tuple of the form (width, height) representing the original size of the image.
:param new_size: tuple of the form (width, height) representing the desired size after scaling.
:return: tuple of the form (left, upper, right, lower) representing the normalized crop coordinates.
"""
# Check if the input tuples have the right form (width, height)
if not (isinstance(old_size, tuple) and isinstance(new_size, tuple) and
len(old_size) == 2 and len(new_size) == 2):
raise ValueError("old_size and new_size should be tuples of the form (width, height)")
# Extract the width and height from the old and new sizes
old_width, old_height = old_size
new_width, new_height = new_size
# Calculate the ratios for width and height
ratio_w = float(new_width) / old_width
ratio_h = float(new_height) / old_height
# Determine which dimension is fixed (width or height)
if ratio_w > ratio_h:
# It must be fixed by width
resize_width = new_width
resize_height = round(old_height * ratio_w)
else:
# Fixed by height
resize_width = round(old_width * ratio_h)
resize_height = new_height
# Calculate cropping boundaries in the resized image space
left = (resize_width - new_width) / 2
upper = (resize_height - new_height) / 2
right = (resize_width + new_width) / 2
lower = (resize_height + new_height) / 2
# Normalize the cropping coordinates
# Return the normalized coordinates as a tuple
return (left, upper, right, lower)
aspect_ratio_to_1024_map = {
"0.42": [640, 1536],
"0.57": [768, 1344],
"0.68": [832, 1216],
"1.00": [1024, 1024],
"1.46": [1216, 832],
"1.75": [1344, 768],
"2.40": [1536, 640]
}
res_to_aspect_map = {
1024: aspect_ratio_to_1024_map,
512: {key: [value[0] // 2, value[1] // 2] for key, value in aspect_ratio_to_1024_map.items()},
}
def best_aspect_ratio(aspect_ratio: float, resolution: int):
map = res_to_aspect_map[resolution]
d = 99999999
res = None
for key, value in map.items():
ar = value[0] / value[1]
diff = abs(aspect_ratio - ar)
if diff < d:
d = diff
res = value
ar = res[0] / res[1]
return f"{ar:.2f}", res |