File size: 12,841 Bytes
c83dd81
c83c9e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c83dd81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os

import subprocess

# 安装额外的库
subprocess.run(["pip", "install", "pip", "-U"])
subprocess.run(["pip", "install", "torch==2.5.1", "torchvision==0.20.1", "torchaudio==2.5.1", "xformers==0.0.28.post3", "--index-url", "https://download.pytorch.org/whl/cu124"])
subprocess.run(["pip", "install", "torchao", "--index-url", "https://download.pytorch.org/whl/nightly/cu124"])
subprocess.run(["pip", "install", "-r", "requirements.txt"])
subprocess.run(["pip", "install", "--no-deps", "facenet_pytorch==2.6.0"])

# 设置 FFMPEG 路径
os.environ["FFMPEG_PATH"] = "/path/to/ffmpeg-4.4-amd64-static"

# 下载预训练模型
subprocess.run(["git", "lfs", "install"])
subprocess.run(["git", "clone", "https://huggingface.co/BadToBest/EchoMimicV2", "pretrained_weights"])


import random
from pathlib import Path
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from PIL import Image
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d_emo import EMOUNet3DConditionModel
from src.models.whisper.audio2feature import load_audio_model
from src.pipelines.pipeline_echomimicv2 import EchoMimicV2Pipeline
from src.utils.util import save_videos_grid
from src.models.pose_encoder import PoseEncoder
from src.utils.dwpose_util import draw_pose_select_v2
from moviepy.editor import VideoFileClip, AudioFileClip

import gradio as gr
from datetime import datetime
from torchao.quantization import quantize_, int8_weight_only
import gc

total_vram_in_gb = torch.cuda.get_device_properties(0).total_memory / 1073741824
print(f'\033[32mCUDA版本:{torch.version.cuda}\033[0m')
print(f'\033[32mPytorch版本:{torch.__version__}\033[0m')
print(f'\033[32m显卡型号:{torch.cuda.get_device_name()}\033[0m')
print(f'\033[32m显存大小:{total_vram_in_gb:.2f}GB\033[0m')
print(f'\033[32m精度:float16\033[0m')
dtype = torch.float16
if torch.cuda.is_available():
        device = "cuda"
else:
    print("cuda not available, using cpu")
    device = "cpu"

ffmpeg_path = os.getenv('FFMPEG_PATH')
if ffmpeg_path is None:
    print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=./ffmpeg-4.4-amd64-static")
elif ffmpeg_path not in os.getenv('PATH'):
    print("add ffmpeg to path")
    os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"


def generate(image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed):
    gc.collect()
    torch.cuda.empty_cache()
    torch.cuda.ipc_collect()
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    save_dir = Path("outputs")
    save_dir.mkdir(exist_ok=True, parents=True)

    ############# model_init started #############
    ## vae init
    vae = AutoencoderKL.from_pretrained("./pretrained_weights/sd-vae-ft-mse").to(device, dtype=dtype)
    if quantization_input:
        quantize_(vae, int8_weight_only())
        print("使用int8量化")

    ## reference net init
    reference_unet = UNet2DConditionModel.from_pretrained("./pretrained_weights/sd-image-variations-diffusers", subfolder="unet", use_safetensors=False).to(dtype=dtype, device=device)
    reference_unet.load_state_dict(torch.load("./pretrained_weights/reference_unet.pth", weights_only=True))
    if quantization_input:
        quantize_(reference_unet, int8_weight_only())

    ## denoising net init
    if os.path.exists("./pretrained_weights/motion_module.pth"):
        print('using motion module')
    else:
        exit("motion module not found")
        ### stage1 + stage2
    denoising_unet = EMOUNet3DConditionModel.from_pretrained_2d(
        "./pretrained_weights/sd-image-variations-diffusers",
        "./pretrained_weights/motion_module.pth",
        subfolder="unet",
        unet_additional_kwargs = {
            "use_inflated_groupnorm": True,
            "unet_use_cross_frame_attention": False,
            "unet_use_temporal_attention": False,
            "use_motion_module": True,
            "cross_attention_dim": 384,
            "motion_module_resolutions": [
                1,
                2,
                4,
                8
            ],
            "motion_module_mid_block": True ,
            "motion_module_decoder_only": False,
            "motion_module_type": "Vanilla",
            "motion_module_kwargs":{
                "num_attention_heads": 8,
                "num_transformer_block": 1,
                "attention_block_types": [
                    'Temporal_Self',
                    'Temporal_Self'
                ],
                "temporal_position_encoding": True,
                "temporal_position_encoding_max_len": 32,
                "temporal_attention_dim_div": 1,
            }
        },
    ).to(dtype=dtype, device=device)
    denoising_unet.load_state_dict(torch.load("./pretrained_weights/denoising_unet.pth", weights_only=True),strict=False)

    # pose net init
    pose_net = PoseEncoder(320, conditioning_channels=3, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
    pose_net.load_state_dict(torch.load("./pretrained_weights/pose_encoder.pth", weights_only=True))

    ### load audio processor params
    audio_processor = load_audio_model(model_path="./pretrained_weights/audio_processor/tiny.pt", device=device)
   
    ############# model_init finished #############
    sched_kwargs = {
        "beta_start": 0.00085,
        "beta_end": 0.012,
        "beta_schedule": "linear",
        "clip_sample": False,
        "steps_offset": 1,
        "prediction_type": "v_prediction",
        "rescale_betas_zero_snr": True,
        "timestep_spacing": "trailing"
    }
    scheduler = DDIMScheduler(**sched_kwargs)

    pipe = EchoMimicV2Pipeline(
        vae=vae,
        reference_unet=reference_unet,
        denoising_unet=denoising_unet,
        audio_guider=audio_processor,
        pose_encoder=pose_net,
        scheduler=scheduler,
    )

    pipe = pipe.to(device, dtype=dtype)

    if seed is not None and seed > -1:
        generator = torch.manual_seed(seed)
    else:
        seed = random.randint(100, 1000000)
        generator = torch.manual_seed(seed)

    inputs_dict = {
        "refimg": image_input,
        "audio": audio_input,
        "pose": pose_input,
    }

    print('Pose:', inputs_dict['pose'])
    print('Reference:', inputs_dict['refimg'])
    print('Audio:', inputs_dict['audio'])

    save_name = f"{save_dir}/{timestamp}"
    
    ref_image_pil = Image.open(inputs_dict['refimg']).resize((width, height))
    audio_clip = AudioFileClip(inputs_dict['audio'])
    
    length = min(length, int(audio_clip.duration * fps), len(os.listdir(inputs_dict['pose'])))

    start_idx = 0

    pose_list = []
    for index in range(start_idx, start_idx + length):
        tgt_musk = np.zeros((width, height, 3)).astype('uint8')
        tgt_musk_path = os.path.join(inputs_dict['pose'], "{}.npy".format(index))
        detected_pose = np.load(tgt_musk_path, allow_pickle=True).tolist()
        imh_new, imw_new, rb, re, cb, ce = detected_pose['draw_pose_params']
        im = draw_pose_select_v2(detected_pose, imh_new, imw_new, ref_w=800)
        im = np.transpose(np.array(im),(1, 2, 0))
        tgt_musk[rb:re,cb:ce,:] = im

        tgt_musk_pil = Image.fromarray(np.array(tgt_musk)).convert('RGB')
        pose_list.append(torch.Tensor(np.array(tgt_musk_pil)).to(dtype=dtype, device=device).permute(2,0,1) / 255.0)
    
    poses_tensor = torch.stack(pose_list, dim=1).unsqueeze(0)
    audio_clip = AudioFileClip(inputs_dict['audio'])
    
    audio_clip = audio_clip.set_duration(length / fps)
    video = pipe(
        ref_image_pil,
        inputs_dict['audio'],
        poses_tensor[:,:,:length,...],
        width,
        height,
        length,
        steps,
        cfg,
        generator=generator,
        audio_sample_rate=sample_rate,
        context_frames=context_frames,
        fps=fps,
        context_overlap=context_overlap,
        start_idx=start_idx,
    ).videos 
    
    final_length = min(video.shape[2], poses_tensor.shape[2], length)
    video_sig = video[:, :, :final_length, :, :]
    
    save_videos_grid(
        video_sig,
        save_name + "_woa_sig.mp4",
        n_rows=1,
        fps=fps,
    )

    video_clip_sig = VideoFileClip(save_name + "_woa_sig.mp4",)
    video_clip_sig = video_clip_sig.set_audio(audio_clip)
    video_clip_sig.write_videofile(save_name + "_sig.mp4", codec="libx264", audio_codec="aac", threads=2)
    video_output = save_name + "_sig.mp4"
    seed_text = gr.update(visible=True, value=seed)
    return video_output, seed_text


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""

            <div>

                <h2 style="font-size: 30px;text-align: center;">EchoMimicV2</h2>

            </div>

            <div style="text-align: center;">

                <a href="https://github.com/antgroup/echomimic_v2">🌐 Github</a> |

                <a href="https://arxiv.org/abs/2411.10061">📜 arXiv </a>

            </div>

            <div style="text-align: center; font-weight: bold; color: red;">

                ⚠️ 该演示仅供学术研究和体验使用。

            </div>

            

            """)
    with gr.Column():
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    image_input = gr.Image(label="图像输入(自动缩放)", type="filepath")
                    audio_input = gr.Audio(label="音频输入", type="filepath")
                    pose_input = gr.Textbox(label="姿态输入(目录地址)", placeholder="请输入姿态数据的目录地址", value="assets/halfbody_demo/pose/01")
                with gr.Group():
                    with gr.Row():
                        width = gr.Number(label="宽度(16的倍数,推荐768)", value=768)
                        height = gr.Number(label="高度(16的倍数,推荐768)", value=768)
                        length = gr.Number(label="视频长度,推荐240)", value=240)
                    with gr.Row():
                        steps = gr.Number(label="步骤(推荐30)", value=20)
                        sample_rate = gr.Number(label="采样率(推荐16000)", value=16000)
                        cfg = gr.Number(label="cfg(推荐2.5)", value=2.5, step=0.1)
                    with gr.Row():
                        fps = gr.Number(label="帧率(推荐24)", value=24)
                        context_frames = gr.Number(label="上下文框架(推荐12)", value=12)
                        context_overlap = gr.Number(label="上下文重叠(推荐3)", value=3)
                    with gr.Row():
                        quantization_input = gr.Checkbox(label="int8量化(推荐显存12G的用户开启,并使用不超过5秒的音频)", value=False)
                        seed = gr.Number(label="种子(-1为随机)", value=-1)
                generate_button = gr.Button("🎬 生成视频")
            with gr.Column():
                video_output = gr.Video(label="输出视频")
                seed_text = gr.Textbox(label="种子", interactive=False, visible=False)
        gr.Examples(
            examples=[
                ["EMTD_dataset/ref_imgs_by_FLUX/man/0001.png", "assets/halfbody_demo/audio/chinese/echomimicv2_man.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/woman/0077.png", "assets/halfbody_demo/audio/chinese/echomimicv2_woman.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/man/0003.png", "assets/halfbody_demo/audio/chinese/fighting.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/woman/0033.png", "assets/halfbody_demo/audio/chinese/good.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/man/0010.png", "assets/halfbody_demo/audio/chinese/news.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/man/1168.png", "assets/halfbody_demo/audio/chinese/no_smoking.wav"],
                ["EMTD_dataset/ref_imgs_by_FLUX/woman/0057.png", "assets/halfbody_demo/audio/chinese/ultraman.wav"]
            ],
            inputs=[image_input, audio_input],  
            label="预设人物及音频",
        )

    generate_button.click(
        generate,
        inputs=[image_input, audio_input, pose_input, width, height, length, steps, sample_rate, cfg, fps, context_frames, context_overlap, quantization_input, seed],
        outputs=[video_output, seed_text],
    )



if __name__ == "__main__":
    demo.queue()
    demo.launch(inbrowser=True)