Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,477 Bytes
9f37f40 caabd4b 9f37f40 caabd4b 9f37f40 386f67c 9f37f40 1e713b8 9f37f40 f06849a 9f37f40 ea51d02 b961115 e7e717e b961115 e7e717e fa0c33b e886b5d e7e717e b961115 e7e717e b961115 e7e717e b961115 9f37f40 b961115 9f37f40 b961115 9f37f40 b961115 9f37f40 b961115 1aa4620 b961115 58e191c 9f37f40 ea51d02 9f37f40 e7e717e caabd4b 58b9a20 caabd4b e7e717e caabd4b 9f37f40 caabd4b 9f37f40 52d743b 9879b4f f06849a 9f37f40 02e5a68 f06849a 02e5a68 9f37f40 f06849a 02b116a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
os.system('pip install gradio==4.29.0')
import random
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
import cv2
import torch
import requests
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
import gradio as gr
import spaces
import json
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.ndarray] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(
score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(
xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']
),
mask=detection_dict.get('mask')
)
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
for detection in detection_results:
mask = detection.mask
if mask is not None:
mask_uint8 = (mask * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Drawing only the mask contours without any bounding box or label
cv2.drawContours(image_cv2, contours, -1, (0, 0, 0), 2) # Black color for contours
return cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB)
def plot_detections(image: Union[Image.Image, np.ndarray], detections: List[DetectionResult]) -> np.ndarray:
annotated_image = annotate(image, detections)
return annotated_image
def load_image(image: Union[str, Image.Image]) -> Image.Image:
if isinstance(image, str) and image.startswith("http"):
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
elif isinstance(image, str):
image = Image.open(image).convert("RGB")
else:
image = image.convert("RGB")
return image
def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]]]:
boxes = []
for result in detection_results:
xyxy = result.box.xyxy
boxes.append(xyxy)
return [boxes]
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(contours) == 0:
return np.array([])
largest_contour = max(contours, key=cv2.contourArea)
return largest_contour
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1).numpy().astype(np.uint8)
masks = (masks > 0).astype(np.uint8)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
masks[idx] = cv2.fillPoly(np.zeros(shape, dtype=np.uint8), [polygon], 1)
return list(masks)
@spaces.GPU
def detect(image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None) -> List[Dict[str, Any]]:
detector_id = detector_id if detector_id else "IDEA-Research/grounding-dino-base"
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device="cuda")
labels = [label if label.endswith(".") else label+"." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
return [DetectionResult.from_dict(result) for result in results]
@spaces.GPU
def segment(image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False, segmenter_id: Optional[str] = None) -> List[DetectionResult]:
segmenter_id = segmenter_id if segmenter_id else "martintmv/InsectSAM"
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to("cuda")
processor = AutoProcessor.from_pretrained(segmenter_id)
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to("cuda")
outputs = segmentator(**inputs)
masks = processor.post_process_masks(masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes)[0]
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], threshold: float = 0.3, polygon_refinement: bool = False, detector_id: Optional[str] = None, segmenter_id: Optional[str] = None) -> Tuple[np.ndarray, List[DetectionResult]]:
image = load_image(image)
detections = detect(image, labels, threshold, detector_id)
detections = segment(image, detections, polygon_refinement, segmenter_id)
return np.array(image), detections
def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]:
y, x = np.where(mask)
return x.min(), y.min(), x.max(), y.max()
def extract_and_paste_insect(original_image: np.ndarray, detection: DetectionResult, background: np.ndarray) -> None:
mask = detection.mask
xmin, ymin, xmax, ymax = mask_to_min_max(mask)
insect_crop = original_image[ymin:ymax, xmin:xmax]
mask_crop = mask[ymin:ymax, xmin:xmax]
insect = cv2.bitwise_and(insect_crop, insect_crop, mask=mask_crop)
x_offset, y_offset = xmin, ymin
x_end, y_end = x_offset + insect.shape[1], y_offset + insect.shape[0]
background[y_offset:y_end, x_offset:x_end] = insect
def create_yellow_background_with_insects(image: np.ndarray, detections: List[DetectionResult]) -> np.ndarray:
yellow_background = np.full((image.shape[0], image.shape[1], 3), (0, 255, 255), dtype=np.uint8) # BGR for yellow
for detection in detections:
if detection.mask is not None:
extract_and_paste_insect(image, detection, yellow_background)
# Convert back to RGB to match Gradio's expected input format
yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
return yellow_background
def run_length_encoding(mask):
pixels = mask.flatten()
rle = []
last_val = 0
count = 0
for pixel in pixels:
if pixel == last_val:
count += 1
else:
if count > 0:
rle.append(count)
count = 1
last_val = pixel
if count > 0:
rle.append(count)
return rle
def detections_to_json(detections):
detections_list = []
for detection in detections:
detection_dict = {
"score": detection.score,
"label": detection.label,
"box": {
"xmin": detection.box.xmin,
"ymin": detection.box.ymin,
"xmax": detection.box.xmax,
"ymax": detection.box.ymax
},
"mask": run_length_encoding(detection.mask) if detection.mask is not None else None
}
detections_list.append(detection_dict)
return detections_list
def process_image(image, include_json):
labels = ["insect"]
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
if include_json:
detections_json = detections_to_json(detections)
json_output_path = “insect_detections.json”
with open(json_output_path, ‘w’) as json_file:
json.dump(detections_json, json_file, indent=4)
return yellow_background_with_insects, json.dumps(detections_json, separators=(’,’, ‘:’))
else:
return yellow_background_with_insects, None
examples = [
[“flower-night.jpg”]
]
gr.Interface(
fn=process_image,
inputs=[gr.Image(type=“pil”), gr.Checkbox(label=“Include JSON”, value=False)],
outputs=[gr.Image(type=“numpy”), gr.Textbox()],
title=“InsectSAM 🐞”,
examples=examples
).launch() |