InsectSAM / app.py
Martin Tomov
cv2 experiment
1aa4620 verified
raw
history blame
4.25 kB
import os
os.system('pip install gradio==4.29.0')
import random
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
import cv2
import torch
import requests
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
import gradio as gr
import spaces
import json
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.ndarray] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(
score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(
xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']
)
)
def mask_to_min_max(mask):
"""Convert mask to min and max coordinates of the bounding box."""
y, x = np.where(mask)
xmin, xmax = x.min(), x.max()
ymin, ymax = y.min(), y.max()
return xmin, ymin, xmax, ymax
def extract_and_paste_insect(original_image, detection, background):
mask = detection.mask
xmin, ymin, xmax, ymax = mask_to_min_max(mask)
insect_crop = original_image[ymin:ymax, xmin:xmax]
mask_crop = mask[ymin:ymax, xmin:xmax]
insect = cv2.bitwise_and(insect_crop, insect_crop, mask=mask_crop)
x_offset, y_offset = detection.box.xmin, detection.box.ymin
x_end, y_end = x_offset + insect.shape[1], y_offset + insect.shape[0]
inverse_mask = cv2.bitwise_not(mask_crop)
bg_region = background[y_offset:y_end, x_offset:x_end]
bg_ready = cv2.bitwise_and(bg_region, bg_region, mask=inverse_mask)
combined = cv2.add(insect, bg_ready)
background[y_offset:y_end, x_offset:x_end] = combined
def create_yellow_background_with_insects(image, detections):
# Create a plain yellow background
yellow_background = np.full_like(image, (0, 255, 255), dtype=np.uint8)
# Extract and paste each insect on the background
for detection in detections:
if detection.mask is not None:
extract_and_paste_insect(image, detection, yellow_background)
return yellow_background
def run_length_encoding(mask):
pixels = mask.flatten()
rle = []
last_val = 0
count = 0
for pixel in pixels:
if pixel == last_val:
count += 1
else:
if count > 0:
rle.append(count)
count = 1
last_val = pixel
if count > 0:
rle.append(count)
return rle
def detections_to_json(detections):
detections_list = []
for detection in detections:
detection_dict = {
"score": detection.score,
"label": detection.label,
"box": {
"xmin": detection.box.xmin,
"ymin": detection.box.ymin,
"xmax": detection.box.xmax,
"ymax": detection.box.ymax
},
"mask": run_length_encoding(detection.mask) if detection.mask is not None else None
}
detections_list.append(detection_dict)
return detections_list
def process_image(image):
labels = ["insect"]
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
detections_json = detections_to_json(detections)
json_output_path = "insect_detections.json"
with open(json_output_path, 'w') as json_file:
json.dump(detections_json, json_file, indent=4)
return yellow_background_with_insects, json.dumps(detections_json, separators=(',', ':'))
gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs=[gr.Image(type="numpy"), gr.Textbox()],
title="🐞 InsectSAM + GroundingDINO Inference",
).launch()