Martin Tomov commited on
Commit
2e5230e
·
verified ·
1 Parent(s): 9c5f1de

testing outputs

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -13,6 +13,8 @@ import matplotlib.pyplot as plt
13
  from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
14
  import gradio as gr
15
  import spaces
 
 
16
 
17
  @dataclass
18
  class BoundingBox:
@@ -178,15 +180,13 @@ def draw_classification_boxes(image_with_insects, detections):
178
  f"{label}: {score:.2f}",
179
  (box.xmin, box.ymin - baseline),
180
  cv2.FONT_HERSHEY_SIMPLEX,
181
- 0.5,
182
  (255, 255, 255),
183
  2
184
  )
185
  return image_with_insects
186
 
187
  def plot_detections_plotly(image: np.ndarray, detections: List[DetectionResult]) -> str:
188
- from plotly import graph_objects as go
189
- import plotly.express as px
190
  fig = px.imshow(image)
191
  class_colors = {i: f'rgb({random.randint(0, 255)}, {random.randint(0, 255)}, {random.randint(0, 255)})' for i in range(len(detections))}
192
  for idx, detection in enumerate(detections):
@@ -225,7 +225,9 @@ def process_image(image):
225
  yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
226
  yellow_background_with_boxes = draw_classification_boxes(yellow_background_with_insects.copy(), detections)
227
  plotly_image_path = plot_detections_plotly(original_image, detections)
228
- return annotated_image, yellow_background_with_boxes, plotly_image_path
 
 
229
 
230
  gr.Interface(
231
  fn=process_image,
 
13
  from transformers import AutoModelForMaskGeneration, AutoProcessor, pipeline
14
  import gradio as gr
15
  import spaces
16
+ from plotly import graph_objects as go
17
+ import plotly.express as px
18
 
19
  @dataclass
20
  class BoundingBox:
 
180
  f"{label}: {score:.2f}",
181
  (box.xmin, box.ymin - baseline),
182
  cv2.FONT_HERSHEY_SIMPLEX,
183
+ 0.5,
184
  (255, 255, 255),
185
  2
186
  )
187
  return image_with_insects
188
 
189
  def plot_detections_plotly(image: np.ndarray, detections: List[DetectionResult]) -> str:
 
 
190
  fig = px.imshow(image)
191
  class_colors = {i: f'rgb({random.randint(0, 255)}, {random.randint(0, 255)}, {random.randint(0, 255)})' for i in range(len(detections))}
192
  for idx, detection in enumerate(detections):
 
225
  yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
226
  yellow_background_with_boxes = draw_classification_boxes(yellow_background_with_insects.copy(), detections)
227
  plotly_image_path = plot_detections_plotly(original_image, detections)
228
+ with open(plotly_image_path, 'r') as file:
229
+ plotly_html = file.read()
230
+ return annotated_image, yellow_background_with_boxes, plotly_html
231
 
232
  gr.Interface(
233
  fn=process_image,