Spaces:
Running
on
Zero
Running
on
Zero
Martin Tomov
commited on
bbox experiment with cv2
Browse files
app.py
CHANGED
@@ -46,7 +46,7 @@ class DetectionResult:
|
|
46 |
)
|
47 |
)
|
48 |
|
49 |
-
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
|
50 |
image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
|
51 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
52 |
|
@@ -55,7 +55,6 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
|
|
55 |
score = detection.score
|
56 |
box = detection.box
|
57 |
mask = detection.mask
|
58 |
-
color = (0, 255, 255) # Yellow in BGR format
|
59 |
|
60 |
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
61 |
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
@@ -155,9 +154,9 @@ def create_yellow_background_with_insects(image: np.ndarray, detections: List[De
|
|
155 |
for detection in detections:
|
156 |
if detection.mask is not None:
|
157 |
extract_and_paste_insect(image, detection, yellow_background)
|
158 |
-
#
|
159 |
-
|
160 |
-
return
|
161 |
|
162 |
def run_length_encoding(mask):
|
163 |
pixels = mask.flatten()
|
@@ -196,16 +195,15 @@ def detections_to_json(detections):
|
|
196 |
def process_image(image, include_json):
|
197 |
labels = ["insect"]
|
198 |
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
199 |
-
annotated_image = plot_detections(original_image, detections)
|
200 |
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
201 |
if include_json:
|
202 |
detections_json = detections_to_json(detections)
|
203 |
json_output_path = "insect_detections.json"
|
204 |
with open(json_output_path, 'w') as json_file:
|
205 |
json.dump(detections_json, json_file, indent=4)
|
206 |
-
return
|
207 |
else:
|
208 |
-
return
|
209 |
|
210 |
examples = [
|
211 |
["flower-night.jpg"]
|
@@ -214,7 +212,7 @@ examples = [
|
|
214 |
gr.Interface(
|
215 |
fn=process_image,
|
216 |
inputs=[gr.Image(type="pil"), gr.Checkbox(label="Include JSON", value=False)],
|
217 |
-
outputs=[gr.Image(type="numpy"), gr.
|
218 |
title="InsectSAM π",
|
219 |
examples=examples
|
220 |
).launch()
|
|
|
46 |
)
|
47 |
)
|
48 |
|
49 |
+
def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult], color=(0, 255, 255)) -> np.ndarray:
|
50 |
image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
|
51 |
image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
|
52 |
|
|
|
55 |
score = detection.score
|
56 |
box = detection.box
|
57 |
mask = detection.mask
|
|
|
58 |
|
59 |
cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
60 |
cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
|
|
|
154 |
for detection in detections:
|
155 |
if detection.mask is not None:
|
156 |
extract_and_paste_insect(image, detection, yellow_background)
|
157 |
+
# Draw bounding boxes and labels on yellow background
|
158 |
+
annotated_background = annotate(yellow_background, detections, color=(0, 255, 255))
|
159 |
+
return annotated_background
|
160 |
|
161 |
def run_length_encoding(mask):
|
162 |
pixels = mask.flatten()
|
|
|
195 |
def process_image(image, include_json):
|
196 |
labels = ["insect"]
|
197 |
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
|
|
198 |
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
199 |
if include_json:
|
200 |
detections_json = detections_to_json(detections)
|
201 |
json_output_path = "insect_detections.json"
|
202 |
with open(json_output_path, 'w') as json_file:
|
203 |
json.dump(detections_json, json_file, indent=4)
|
204 |
+
return yellow_background_with_insects, json.dumps(detections_json, separators=(',', ':'))
|
205 |
else:
|
206 |
+
return yellow_background_with_insects, None
|
207 |
|
208 |
examples = [
|
209 |
["flower-night.jpg"]
|
|
|
212 |
gr.Interface(
|
213 |
fn=process_image,
|
214 |
inputs=[gr.Image(type="pil"), gr.Checkbox(label="Include JSON", value=False)],
|
215 |
+
outputs=[gr.Image(type="numpy"), gr.Textbox()],
|
216 |
title="InsectSAM π",
|
217 |
examples=examples
|
218 |
).launch()
|