Martin Tomov commited on
Commit
9bdce8e
Β·
verified Β·
1 Parent(s): f1cd395

bbox experiment with cv2

Browse files
Files changed (1) hide show
  1. app.py +7 -9
app.py CHANGED
@@ -46,7 +46,7 @@ class DetectionResult:
46
  )
47
  )
48
 
49
- def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult]) -> np.ndarray:
50
  image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
51
  image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
52
 
@@ -55,7 +55,6 @@ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[Dete
55
  score = detection.score
56
  box = detection.box
57
  mask = detection.mask
58
- color = (0, 255, 255) # Yellow in BGR format
59
 
60
  cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
61
  cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
@@ -155,9 +154,9 @@ def create_yellow_background_with_insects(image: np.ndarray, detections: List[De
155
  for detection in detections:
156
  if detection.mask is not None:
157
  extract_and_paste_insect(image, detection, yellow_background)
158
- # Convert back to RGB to match Gradio's expected input format
159
- yellow_background = cv2.cvtColor(yellow_background, cv2.COLOR_BGR2RGB)
160
- return yellow_background
161
 
162
  def run_length_encoding(mask):
163
  pixels = mask.flatten()
@@ -196,16 +195,15 @@ def detections_to_json(detections):
196
  def process_image(image, include_json):
197
  labels = ["insect"]
198
  original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
199
- annotated_image = plot_detections(original_image, detections)
200
  yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
201
  if include_json:
202
  detections_json = detections_to_json(detections)
203
  json_output_path = "insect_detections.json"
204
  with open(json_output_path, 'w') as json_file:
205
  json.dump(detections_json, json_file, indent=4)
206
- return annotated_image, yellow_background_with_insects, json.dumps(detections_json, separators=(',', ':'))
207
  else:
208
- return annotated_image, yellow_background_with_insects, None
209
 
210
  examples = [
211
  ["flower-night.jpg"]
@@ -214,7 +212,7 @@ examples = [
214
  gr.Interface(
215
  fn=process_image,
216
  inputs=[gr.Image(type="pil"), gr.Checkbox(label="Include JSON", value=False)],
217
- outputs=[gr.Image(type="numpy"), gr.Image(type="numpy"), gr.Textbox()],
218
  title="InsectSAM 🐞",
219
  examples=examples
220
  ).launch()
 
46
  )
47
  )
48
 
49
+ def annotate(image: Union[Image.Image, np.ndarray], detection_results: List[DetectionResult], color=(0, 255, 255)) -> np.ndarray:
50
  image_cv2 = np.array(image) if isinstance(image, Image.Image) else image
51
  image_cv2 = cv2.cvtColor(image_cv2, cv2.COLOR_RGB2BGR)
52
 
 
55
  score = detection.score
56
  box = detection.box
57
  mask = detection.mask
 
58
 
59
  cv2.rectangle(image_cv2, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
60
  cv2.putText(image_cv2, f'{label}: {score:.2f}', (box.xmin, box.ymin - 10),
 
154
  for detection in detections:
155
  if detection.mask is not None:
156
  extract_and_paste_insect(image, detection, yellow_background)
157
+ # Draw bounding boxes and labels on yellow background
158
+ annotated_background = annotate(yellow_background, detections, color=(0, 255, 255))
159
+ return annotated_background
160
 
161
  def run_length_encoding(mask):
162
  pixels = mask.flatten()
 
195
  def process_image(image, include_json):
196
  labels = ["insect"]
197
  original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
 
198
  yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
199
  if include_json:
200
  detections_json = detections_to_json(detections)
201
  json_output_path = "insect_detections.json"
202
  with open(json_output_path, 'w') as json_file:
203
  json.dump(detections_json, json_file, indent=4)
204
+ return yellow_background_with_insects, json.dumps(detections_json, separators=(',', ':'))
205
  else:
206
+ return yellow_background_with_insects, None
207
 
208
  examples = [
209
  ["flower-night.jpg"]
 
212
  gr.Interface(
213
  fn=process_image,
214
  inputs=[gr.Image(type="pil"), gr.Checkbox(label="Include JSON", value=False)],
215
+ outputs=[gr.Image(type="numpy"), gr.Textbox()],
216
  title="InsectSAM 🐞",
217
  examples=examples
218
  ).launch()