Spaces:
Running
on
Zero
Running
on
Zero
Martin Tomov
commited on
with gr.Blocks() as demo: with gr.Row():
Browse files
app.py
CHANGED
@@ -86,7 +86,7 @@ def get_boxes(detection_results: List[DetectionResult]) -> List[List[List[float]
|
|
86 |
|
87 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
88 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
89 |
-
if len(contours)
|
90 |
return np.array([])
|
91 |
largest_contour = max(contours, key=cv2.contourArea)
|
92 |
return largest_contour
|
@@ -231,7 +231,7 @@ with gr.Blocks() as demo:
|
|
231 |
|
232 |
annotated_output = gr.Image(type="numpy")
|
233 |
json_output = gr.Textbox()
|
234 |
-
crops_output = gr.Gallery(label="Cropped Bounding Boxes")
|
235 |
|
236 |
def update_outputs(image, include_json, include_bboxes):
|
237 |
results = process_image(image, include_json, include_bboxes)
|
|
|
86 |
|
87 |
def mask_to_polygon(mask: np.ndarray) -> np.ndarray:
|
88 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
89 |
+
if len(contours) is 0:
|
90 |
return np.array([])
|
91 |
largest_contour = max(contours, key=cv2.contourArea)
|
92 |
return largest_contour
|
|
|
231 |
|
232 |
annotated_output = gr.Image(type="numpy")
|
233 |
json_output = gr.Textbox()
|
234 |
+
crops_output = gr.Gallery(label="Cropped Bounding Boxes")
|
235 |
|
236 |
def update_outputs(image, include_json, include_bboxes):
|
237 |
results = process_image(image, include_json, include_bboxes)
|