|
from datetime import date |
|
from datetime import datetime |
|
import re |
|
|
|
import numpy as np |
|
import pandas as pd |
|
from PIL import Image |
|
import plotly.express as px |
|
import plotly.graph_objects as go |
|
import streamlit as st |
|
import time |
|
|
|
from plotly.subplots import make_subplots |
|
|
|
|
|
dfSentiment = pd.read_csv('./sentiment_data.csv') |
|
|
|
dfSentiment['timestamp'] = [datetime.strptime(dt, '%Y-%m-%d') for dt in dfSentiment['timestamp'].tolist()] |
|
|
|
|
|
col_list = dfSentiment.columns.tolist() |
|
|
|
r_sentiment = re.compile(".*sentiment") |
|
sentiment_cols = list(filter(r_sentiment.match, col_list)) |
|
|
|
r_post = re.compile(".*post") |
|
post_list = list(filter(r_post.match, col_list)) |
|
|
|
r_perc= re.compile(".*perc") |
|
perc_list = list(filter(r_perc.match, col_list)) |
|
|
|
r_close = re.compile(".*close") |
|
close_list = list(filter(r_close.match, col_list)) |
|
|
|
r_volume = re.compile(".*volume") |
|
volume_list = list(filter(r_volume.match, col_list)) |
|
|
|
sentiment_cols = sentiment_cols + post_list |
|
stocks_cols = close_list + volume_list |
|
|
|
with st.sidebar: |
|
|
|
fourthbrain_logo = Image.open('./images/fourthbrain_logo.png') |
|
st.image([fourthbrain_logo], width=300) |
|
|
|
|
|
start_date_filter = st.date_input( |
|
'Start Date', |
|
min(dfSentiment['timestamp']), |
|
min_value=min(dfSentiment['timestamp']), |
|
max_value=max(dfSentiment['timestamp']) |
|
) |
|
|
|
|
|
end_date_filter = st.date_input( |
|
'End Date', |
|
max(dfSentiment['timestamp']), |
|
min_value=min(dfSentiment['timestamp']), |
|
max_value=max(dfSentiment['timestamp']) |
|
) |
|
|
|
sentiment_select = st.selectbox('Select Sentiment/Reddit Data', sentiment_cols) |
|
stock_select = st.selectbox('Select Stock Data', stocks_cols) |
|
|
|
|
|
tsla_logo = Image.open('./images/tsla_logo.png') |
|
reddit_logo = Image.open('./images/reddit_logo.png') |
|
st.image([tsla_logo, reddit_logo], width=200) |
|
|
|
|
|
st.title('TSLA Subreddit and Stock Price') |
|
|
|
|
|
dfSentiment = dfSentiment[dfSentiment['timestamp'] >= datetime(start_date_filter.year, start_date_filter.month, start_date_filter.day)] |
|
dfSentiment = dfSentiment[dfSentiment['timestamp'] <= datetime(end_date_filter.year, end_date_filter.month, end_date_filter.day)] |
|
dfSentiment = dfSentiment.reset_index(drop=True) |
|
|
|
|
|
|
|
placeholder = st.empty() |
|
|
|
|
|
for i in range(1, len(dfSentiment)-1): |
|
|
|
|
|
last_close = dfSentiment['close'][i] |
|
last_close_lag1 = dfSentiment['close'][i-1] |
|
last_sentiment = dfSentiment['sentiment_score'][i] |
|
last_sentiment_lag1 = dfSentiment['sentiment_score'][i-1] |
|
|
|
|
|
with placeholder.container(): |
|
|
|
|
|
kpi1, kpi2 = st.columns(2) |
|
|
|
|
|
kpi1.metric( |
|
label='Sentiment Score', |
|
value=round(last_sentiment, 3), |
|
delta=round(last_sentiment_lag1, 3), |
|
) |
|
|
|
kpi2.metric( |
|
label='Last Closing Price', |
|
value=round(last_close), |
|
delta=round(last_close - last_close_lag1) |
|
) |
|
|
|
|
|
|
|
fig_col1, fig_col2 = st.columns(2) |
|
|
|
with fig_col1: |
|
|
|
fig=make_subplots(specs=[[{"secondary_y":True}]]) |
|
|
|
|
|
fig.add_trace( |
|
go.Scatter( |
|
x=dfSentiment['timestamp'][0:i], |
|
y=dfSentiment[sentiment_select][0:i], |
|
name=sentiment_select, |
|
mode='lines', |
|
hoverinfo='none', |
|
) |
|
) |
|
|
|
if sentiment_select.startswith('perc') == True: |
|
yaxis_label = '% Change Sentiment' |
|
|
|
elif sentiment_select in sentiment_cols: |
|
yaxis_label = 'Sentiment Score' |
|
|
|
elif sentiment_select in post_list: |
|
yaxis_label = 'Volume' |
|
|
|
fig.layout.yaxis.title=yaxis_label |
|
|
|
if stock_select.startswith('perc') == True: |
|
fig.add_trace( |
|
go.Scatter( |
|
x=dfSentiment['timestamp'][0:i], |
|
y=dfSentiment[stock_select][0:i], |
|
name=stock_select, |
|
mode='lines', |
|
hoverinfo='none', |
|
yaxis='y2', |
|
) |
|
) |
|
fig.layout.yaxis2.title='% Change Stock Price ($US)' |
|
|
|
elif stock_select == 'volume': |
|
fig.add_trace( |
|
go.Scatter( |
|
x=dfSentiment['timestamp'][0:i], |
|
y=dfSentiment[stock_select][0:i], |
|
name=stock_select, |
|
mode='lines', |
|
hoverinfo='none', |
|
yaxis='y2', |
|
) |
|
) |
|
|
|
fig.layout.yaxis2.title="Shares Traded" |
|
|
|
|
|
else: |
|
fig.add_trace( |
|
go.Scatter( |
|
x=dfSentiment['timestamp'][0:i], |
|
y=dfSentiment[stock_select][0:i], |
|
name=stock_select, |
|
mode='lines', |
|
hoverinfo='none', |
|
yaxis='y2', |
|
) |
|
) |
|
|
|
fig.layout.yaxis2.title='Stock Price ($USD)' |
|
|
|
|
|
fig.layout.xaxis.title='Timestamp' |
|
|
|
st.write(fig) |
|
|
|
|
|
st.markdown('### Detailed Data View') |
|
st.dataframe(dfSentiment.iloc[:, 1:][0:i]) |
|
time.sleep(1) |