Spaces:
Sleeping
Sleeping
#import libraries | |
import matplotlib.pyplot as plt | |
import numpy | |
import sys | |
import numpy as np | |
from sklearn.neighbors import KNeighborsClassifier | |
import pandas as pd | |
from itertools import islice | |
import pickle | |
import streamlit as st | |
import csv | |
from sklearn.model_selection import KFold | |
from sklearn.model_selection import cross_val_score | |
from sklearn.metrics import confusion_matrix | |
import sklearn.metrics as metrics | |
# Read a CSV file and determine X features & y target | |
df=pd.read_csv("datatest.csv") | |
X=df.drop("level",axis=1).values | |
y=df.level.values | |
#Build a model & get a Scores | |
knn = KNeighborsClassifier(n_neighbors=3) | |
knn.fit(X, y) | |
k_folds = KFold(n_splits = 5) | |
scores = cross_val_score(knn, X, y, cv = k_folds) | |
print("Cross Validation Scores: ", scores) | |
print("Average CV Score: ", scores.mean()) | |
print("Number of CV Scores used in Average: ", len(scores)) | |
y_true=df | |
expected=y_true | |
predict = knn.predict(X) | |
confusion_matrix(y_true['level'], y_pred=predict) | |
print(metrics.classification_report(y_true['level'], y_pred=predict)) | |
print(type(X)) | |
print(type(y)) | |
# Visualize the dataframe in the Streamlit app | |
st.write(""" | |
# Grade of Parts | |
""") | |
st.bar_chart(y) | |
# Title | |
st.title ("Hello Engineer") | |
# Header | |
st.header("Lets know about Quality Status") | |
# pickling the model | |
pickle_out = open("knn.pkl", "wb") | |
pickle.dump(knn, pickle_out) | |
pickle_out.close() | |
# loading in the model to predict(classify) on the data | |
pickle_in = open('knn.pkl', 'rb') | |
classifier = pickle.load(pickle_in) | |
def welcome(): | |
return 'welcome all' | |
# defining the function which will make the prediction using | |
# the data which the user inputs | |
def prediction(ppm, SR, repeat_of_alarm, not_po_ka_yoke, high_price): | |
ppm=int(ppm) | |
SR=int(SR) | |
repeat_of_alarm=int(repeat_of_alarm) | |
not_po_ka_yoke=int(not_po_ka_yoke) | |
high_price=int(high_price) | |
prediction = classifier.predict([[ppm, SR, repeat_of_alarm, not_po_ka_yoke, high_price]]) | |
print(prediction) | |
return prediction | |
# this is the main function in which we define our webpage | |
#dictionary for levels | |
def main(): | |
idx2label={ | |
0:"A", | |
1:"B", | |
2:"C", | |
3:"D", | |
4:"E", | |
5:"F" | |
} | |
# giving the webpage a title | |
st.title("Classification") | |
html_temp = """ | |
<div style ="background-color:yellow;padding:13px"> | |
<h1 style ="color:black;text-align:center;"> Classifier ML App </h1> | |
</div> | |
""" | |
# this line allows us to display the front end aspects we have | |
st.markdown(html_temp, unsafe_allow_html = True) | |
ppm = st.selectbox("PPM", [0,1]) | |
SR = st.selectbox("S/R", [0,1]) | |
repeat_of_alarm = st.selectbox("Repeat of Alarm", [0,1]) | |
not_po_ka_yoke =st.selectbox("Not Pokayoka", [0,1]) | |
high_price= st.selectbox("High Price", [0,1]) | |
level = ([]) | |
# the below line ensures that when the button called 'Predict' is clicked, | |
# the prediction function defined above is called to make the prediction(classify) | |
# and store it in the variable result \ | |
if st.button("See a Grade"): | |
level=prediction(ppm, SR, repeat_of_alarm, not_po_ka_yoke, high_price) | |
st.success((idx2label[level[0]])) | |
if __name__=='__main__': | |
main() |