Spaces:
Paused
Paused
File size: 5,384 Bytes
e7d0dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# routes.py
from flask import Blueprint, jsonify, request
import io
from app.utils import OCRModel
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
main = Blueprint('main', __name__)
ocr_model = OCRModel()
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
KNOWN_ALLERGENS = {
'gluten': ['wheat', 'barley', 'rye', 'oats', 'gluten', 'flour', 'bread', 'pasta'],
'dairy': ['milk', 'yogurt', 'cheese', 'lactose', 'cream', 'butter', 'whey'],
'nuts': ['nuts', 'peanuts', 'almonds', 'walnuts', 'cashews', 'pistachios'],
'eggs': ['eggs', 'egg', 'albumin', 'mayonnaise'],
'soy': ['soy', 'soybeans', 'tofu', 'edamame'],
'fish': ['fish', 'salmon', 'tuna', 'cod', 'tilapia'],
'shellfish': ['shellfish', 'shrimp', 'crab', 'lobster', 'oyster', 'mussels'],
'sesame': ['sesame', 'tahini'],
'mustard': ['mustard'],
'celery': ['celery'],
'lupin': ['lupin'],
'sulfites': ['sulfites', 'sulphites']
}
def allowed_file(filename):
"""Validate file extension"""
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def find_allergens(text, user_allergens):
"""Finding Sensitivities in the Text"""
text = text.lower()
found_allergens = set()
allergen_details = {}
allergen_locations = {}
for allergen in user_allergens:
allergen = allergen.strip().lower()
if allergen in KNOWN_ALLERGENS:
for variant in KNOWN_ALLERGENS[allergen]:
if variant.lower() in text:
found_allergens.add(allergen)
allergen_details[allergen] = variant
# Store the location of the word in the text
allergen_locations[allergen] = text.index(variant.lower())
elif allergen in text:
found_allergens.add(allergen)
allergen_details[allergen] = allergen
allergen_locations[allergen] = text.index(allergen)
return found_allergens, allergen_details, allergen_locations
@main.route('/')
def index():
return jsonify({
"message": "Welcome to the Text Recognition and Sensitivity Checking Service",
"endpoints": {
"/api/ocr": "POST - Image analysis and sensitivity testing",
"/api/allergens": "GET - List of known allergens"
},
"supported_formats": list(ALLOWED_EXTENSIONS),
"known_allergens": list(KNOWN_ALLERGENS.keys())
})
@main.route('/api/ocr', methods=['POST'])
def process_image():
try:
# Check if file exists
if 'file' not in request.files:
logger.warning("No file uploaded")
return jsonify({"error": "No file uploaded"}), 400
# Check the list of allergies
if 'allergens' not in request.form:
logger.warning("Allergens not specified")
return jsonify({"error": "Allergens not specified"}), 400
file = request.files['file']
if file.filename == '':
logger.warning("No file selected")
return jsonify({"error": "No file selected"}), 400
# Check file type
if not allowed_file(file.filename):
logger.warning(f"Invalid file type: {file.filename}")
return jsonify({
"error": "File type not supported",
"supported_formats": list(ALLOWED_EXTENSIONS)
}), 400
# Prepare a list of allergies.
user_allergens = request.form['allergens'].split(',')
logger.info(f"Processing image for allergens: {user_allergens}")
# Read image
file_bytes = file.read()
file_stream = io.BytesIO(file_bytes)
# Processing image
extracted_text = ocr_model.process_image(file_stream)
logger.info(f"Extracted text: {extracted_text}")
# Searching for allergies
found_allergens, allergen_details, allergen_locations = find_allergens(extracted_text, user_allergens)
# Response
response = {
"success": True,
"extracted_text": extracted_text,
"analysis": {
"found_allergens": list(found_allergens),
"allergen_details": allergen_details,
"allergen_locations": allergen_locations,
"has_allergens": len(found_allergens) > 0,
"warning": "⚠️ Warning: Allergens found!" if found_allergens else "✅ No allergens found",
"severity": "high" if len(found_allergens) > 0 else "none"
}
}
logger.info(f"Analysis completed successfully: {found_allergens}")
return jsonify(response)
except Exception as e:
logger.error(f"Error processing request: {str(e)}", exc_info=True)
return jsonify({
"error": "An error occurred while processing the image.",
"details": str(e)
}), 500
@main.route('/api/allergens', methods=['GET'])
def get_known_allergens():
return jsonify({
"allergens": KNOWN_ALLERGENS,
"total_count": len(KNOWN_ALLERGENS),
"last_updated": "2024-03-24" # Update this date when the list is updated.
}) |