Spaces:
Build error
Build error
import transformers | |
import torch | |
import os | |
import json | |
import random | |
import numpy as np | |
import argparse | |
from torch.utils.tensorboard import SummaryWriter | |
from datetime import datetime | |
from tqdm import tqdm | |
from torch.nn import DataParallel | |
import logging | |
from transformers.modeling_gpt2 import GPT2Config, GPT2LMHeadModel | |
from transformers import BertTokenizer | |
from os.path import join, exists | |
from itertools import zip_longest, chain | |
from dataset import MyDataset | |
from torch.utils.data import Dataset, DataLoader | |
from torch.nn import CrossEntropyLoss | |
from sklearn.model_selection import train_test_split | |
from train_origin import create_model | |
import torch.nn.functional as F | |
import copy | |
PAD = '[PAD]' | |
pad_id = 0 | |
def set_interact_args(): | |
""" | |
Sets up the training arguments. | |
""" | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', default='0', type=str, required=False, help='生成设备') | |
parser.add_argument('--temperature', default=1, type=float, required=False, help='生成的temperature') | |
parser.add_argument('--topk', default=8, type=int, required=False, help='最高k选1') | |
parser.add_argument('--topp', default=0, type=float, required=False, help='最高积累概率') | |
parser.add_argument('--model_config', default='config/model_config_dialogue_small.json', type=str, required=False, | |
help='模型参数') | |
parser.add_argument('--log_path', default='data/interacting_mmi.log', type=str, required=False, | |
help='interact_mmi日志存放位置') | |
parser.add_argument('--voca_path', default='vocab/vocab_small.txt', type=str, required=False, help='选择词库') | |
parser.add_argument('--dialogue_model_path', default='dialogue_model/', type=str, required=False, | |
help='dialogue_model路径') | |
parser.add_argument('--mmi_model_path', default='mmi_model/', type=str, required=False, | |
help='互信息mmi_model路径') | |
parser.add_argument('--save_samples_path', default="sample/", type=str, required=False, help="保存聊天记录的文件路径") | |
parser.add_argument('--repetition_penalty', default=1.0, type=float, required=False, | |
help="重复惩罚参数,若生成的对话重复性较高,可适当提高该参数") | |
parser.add_argument('--seed', type=int, default=None, help='设置种子用于生成随机数,以使得训练的结果是确定的') | |
parser.add_argument('--max_len', type=int, default=25, help='每个utterance的最大长度,超过指定长度则进行截断') | |
parser.add_argument('--max_history_len', type=int, default=5, help="dialogue history的最大长度") | |
parser.add_argument('--no_cuda', action='store_true', help='不使用GPU进行预测') | |
parser.add_argument('--batch_size', type=int, default=5, help='批量生成response,然后经过MMI模型进行筛选') | |
parser.add_argument('--debug', action='store_true', help='指定该参数,可以查看生成的所有候选的reponse,及其loss') | |
return parser.parse_args() | |
def create_logger(args): | |
""" | |
将日志输出到日志文件和控制台 | |
""" | |
logger = logging.getLogger(__name__) | |
logger.setLevel(logging.INFO) | |
formatter = logging.Formatter( | |
'%(asctime)s - %(levelname)s - %(message)s') | |
# 创建一个handler,用于写入日志文件 | |
file_handler = logging.FileHandler( | |
filename=args.log_path) | |
file_handler.setFormatter(formatter) | |
file_handler.setLevel(logging.INFO) | |
logger.addHandler(file_handler) | |
# 创建一个handler,用于将日志输出到控制台 | |
console = logging.StreamHandler() | |
console.setLevel(logging.DEBUG) | |
console.setFormatter(formatter) | |
logger.addHandler(console) | |
return logger | |
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): | |
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering | |
Args: | |
logits: logits distribution shape (vocab size) | |
top_k > 0: keep only top k tokens with highest probability (top-k filtering). | |
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). | |
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) | |
""" | |
assert logits.dim() == 2 | |
top_k = min(top_k, logits[0].size(-1)) # Safety check | |
if top_k > 0: | |
# Remove all tokens with a probability less than the last token of the top-k | |
# torch.topk()返回最后一维最大的top_k个元素,返回值为二维(values,indices) | |
# ...表示其他维度由计算机自行推断 | |
for logit in logits: | |
indices_to_remove = logit < torch.topk(logit, top_k)[0][..., -1, None] | |
logit[indices_to_remove] = filter_value # 对于topk之外的其他元素的logits值设为负无穷 | |
if top_p > 0.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1) # 对logits进行递减排序 | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
# Remove tokens with cumulative probability above the threshold | |
sorted_indices_to_remove = cumulative_probs > top_p | |
# Shift the indices to the right to keep also the first token above the threshold | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
for index, logit in enumerate(logits): | |
indices_to_remove = sorted_indices[index][sorted_indices_to_remove[index]] | |
logit[indices_to_remove] = filter_value | |
return logits | |
def main(): | |
args = set_interact_args() | |
logger = create_logger(args) | |
# 当用户使用GPU,并且GPU可用时 | |
args.cuda = torch.cuda.is_available() and not args.no_cuda | |
device = 'cuda' if args.cuda else 'cpu' | |
logger.info('using device:{}'.format(device)) | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.device | |
tokenizer = BertTokenizer(vocab_file=args.voca_path) | |
# 对话model | |
dialogue_model = GPT2LMHeadModel.from_pretrained(args.dialogue_model_path) | |
dialogue_model.to(device) | |
dialogue_model.eval() | |
# 互信息mmi model | |
mmi_model = GPT2LMHeadModel.from_pretrained(args.mmi_model_path) | |
mmi_model.to(device) | |
mmi_model.eval() | |
if args.save_samples_path: | |
if not os.path.exists(args.save_samples_path): | |
os.makedirs(args.save_samples_path) | |
samples_file = open(args.save_samples_path + '/mmi_samples.txt', 'a', encoding='utf8') | |
samples_file.write("聊天记录{}:\n".format(datetime.now())) | |
# 存储聊天记录,每个utterance以token的id的形式进行存储 | |
history = [] | |
print('开始和chatbot聊天,输入CTRL + Z以退出') | |
while True: | |
try: | |
text = input("user:") | |
if args.save_samples_path: | |
samples_file.write("user:{}\n".format(text)) | |
history.append(tokenizer.encode(text)) | |
input_ids = [tokenizer.cls_token_id] # 每个input以[CLS]为开头 | |
for history_id, history_utr in enumerate(history[-args.max_history_len:]): | |
input_ids.extend(history_utr) | |
input_ids.append(tokenizer.sep_token_id) | |
# 用于批量生成response,维度为(batch_size,token_len) | |
input_ids = [copy.deepcopy(input_ids) for _ in range(args.batch_size)] | |
curr_input_tensors = torch.tensor(input_ids).long().to(device) | |
generated = [] # 二维数组,维度为(生成的response的最大长度,batch_size),generated[i,j]表示第j个response的第i个token的id | |
finish_set = set() # 标记是否所有response均已生成结束,若第i个response生成结束,即生成了sep_token_id,则将i放入finish_set | |
# 最多生成max_len个token | |
for _ in range(args.max_len): | |
outputs = dialogue_model(input_ids=curr_input_tensors) | |
next_token_logits = outputs[0][:, -1, :] | |
# 对于已生成的结果generated中的每个token添加一个重复惩罚项,降低其生成概率 | |
for index in range(args.batch_size): | |
for token_id in set([token_ids[index] for token_ids in generated]): | |
next_token_logits[index][token_id] /= args.repetition_penalty | |
next_token_logits = next_token_logits / args.temperature | |
# 对于[UNK]的概率设为无穷小,也就是说模型的预测结果不可能是[UNK]这个token | |
for next_token_logit in next_token_logits: | |
next_token_logit[tokenizer.convert_tokens_to_ids('[UNK]')] = -float('Inf') | |
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=args.topk, top_p=args.topp) | |
# torch.multinomial表示从候选集合中无放回地进行抽取num_samples个元素,权重越高,抽到的几率越高,返回元素的下标 | |
next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1) | |
# 判断是否有response生成了[SEP],将已生成了[SEP]的resposne进行标记 | |
for index, token_id in enumerate(next_token[:, 0]): | |
if token_id == tokenizer.sep_token_id: | |
finish_set.add(index) | |
# 检验是否所有的response均已生成[SEP] | |
finish_flag = True # 是否所有的response均已生成[SEP]的token | |
for index in range(args.batch_size): | |
if index not in finish_set: # response批量生成未完成 | |
finish_flag = False | |
break | |
if finish_flag: | |
break | |
generated.append([token.item() for token in next_token[:, 0]]) | |
# 将新生成的token与原来的token进行拼接 | |
curr_input_tensors = torch.cat((curr_input_tensors, next_token), dim=-1) | |
candidate_responses = [] # 生成的所有候选response | |
for batch_index in range(args.batch_size): | |
response = [] | |
for token_index in range(len(generated)): | |
if generated[token_index][batch_index] != tokenizer.sep_token_id: | |
response.append(generated[token_index][batch_index]) | |
else: | |
break | |
candidate_responses.append(response) | |
# mmi模型的输入 | |
if args.debug: | |
print("candidate response:") | |
samples_file.write("candidate response:\n") | |
min_loss = float('Inf') | |
best_response = "" | |
for response in candidate_responses: | |
mmi_input_id = [tokenizer.cls_token_id] # 每个input以[CLS]为开头 | |
mmi_input_id.extend(response) | |
mmi_input_id.append(tokenizer.sep_token_id) | |
for history_utr in reversed(history[-args.max_history_len:]): | |
mmi_input_id.extend(history_utr) | |
mmi_input_id.append(tokenizer.sep_token_id) | |
mmi_input_tensor = torch.tensor(mmi_input_id).long().to(device) | |
out = mmi_model(input_ids=mmi_input_tensor, labels=mmi_input_tensor) | |
loss = out[0].item() | |
if args.debug: | |
text = tokenizer.convert_ids_to_tokens(response) | |
print("{} loss:{}".format("".join(text), loss)) | |
samples_file.write("{} loss:{}\n".format("".join(text), loss)) | |
if loss < min_loss: | |
best_response = response | |
min_loss = loss | |
history.append(best_response) | |
text = tokenizer.convert_ids_to_tokens(best_response) | |
print("chatbot:" + "".join(text)) | |
if args.save_samples_path: | |
samples_file.write("chatbot:{}\n".format("".join(text))) | |
except KeyboardInterrupt: | |
if args.save_samples_path: | |
samples_file.close() | |
break | |
if __name__ == '__main__': | |
main() | |