import argparse from os.path import join import numpy as np from collections import Counter import matplotlib.pyplot as plt from matplotlib.pyplot import MultipleLocator def generate_subset(): """ 用于生成训练子集 :return: """ parser = argparse.ArgumentParser() parser.add_argument('--raw_data_path', default='data/train.txt', type=str, required=False, help='原始训练语料') parser.add_argument('--subset_size', default=1000000, type=int, required=False, help='要获取的对话数据子集的规模') parser.add_argument('--subset_data_path', default='data', type=str, required=False, help='数据子集文件路径,指定文件的父目录') args = parser.parse_args() with open(args.raw_data_path, "r", encoding="utf8") as f: data = f.read() dialogues = data.split("\n\n") subset_size = min(len(dialogues), args.subset_size) with open(join(args.subset_data_path, "train_{}w.txt".format(int(subset_size / 10000))), "w", encoding="utf8") as f: print("generating subset,please wait a few minutes") for dialogue_index, dialogue in enumerate(dialogues): if dialogue_index >= subset_size: break for utterance in dialogue.split("\n"): f.writelines(utterance + "\n") f.writelines("\n") def compute_dialogue_length(): """ 查看聊天语料中的dialogue的长度分布 :return: """ parser = argparse.ArgumentParser() parser.add_argument('--raw_data_path', default='data/train.txt', type=str, required=False, help='原始训练语料') args = parser.parse_args() with open(args.raw_data_path, "r", encoding="utf8") as f: data = f.read() dialogues = data.split("\n\n") # 统计各个dialogue的长度 dialogues_lengths = [len(dialogue.replace("\n", "")) for dialogue in dialogues] counter = Counter(dialogues_lengths) # {label:sum(label)} dialogue_length_arr = list(counter) num_arr = [counter[element] for element in list(counter)] print(counter[300]) x_major_locator = MultipleLocator(100) # MultipleLocator用于设置刻度间隔 # y_major_locator = MultipleLocator(20000) ax = plt.gca() # ax为两条坐标轴的实例 ax.xaxis.set_major_locator(x_major_locator) # 把x轴的主刻度设置为10的倍数 # ax.yaxis.set_major_locator(y_major_locator) plt.xlabel('dialogue length') plt.ylabel('number of dialogue') # plt.plot(dialogue_length_arr, num_arr, c='green') plt.scatter(dialogue_length_arr, num_arr) plt.show() if __name__ == '__main__': generate_subset()