Spaces:
Runtime error
Runtime error
File size: 27,738 Bytes
06db6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
from django.shortcuts import render
from django.http import HttpResponse, JsonResponse
import json
import model.test as mltest
import model.utils as mdul
from model.floorplan import *
import retrieval.retrieval as rt
import time
import pickle
import scipy.io as sio
import numpy as np
from model.decorate import *
import math
import pandas as pd
import matlab.engine
global test_data, test_data_topk, testNameList, trainNameList
global train_data, trainNameList, trainTF, train_data_eNum, train_data_rNum
global engview, model
global tf_train, centroids, clusters
def home(request):
return render(request, "home.html", )
def Init(request):
start = time.clock()
getTestData()
getTrainData()
loadMatlabEng()
loadModel()
loadRetrieval()
end = time.clock()
print('Init(model+test+train+engine+retrieval) time: %s Seconds' % (end - start))
return HttpResponse(None)
def loadMatlabEng():
startengview = time.clock()
global engview
engview = matlab.engine.start_matlab()
engview.addpath(r'./align_fp/', nargout=0)
endengview = time.clock()
print(' matlab.engineview time: %s Seconds' % (endengview - startengview))
def loadRetrieval():
global tf_train, centroids, clusters
t1 = time.clock()
tf_train = np.load('./retrieval/tf_train.npy')
centroids = np.load('./retrieval/centroids_train.npy')
clusters = np.load('./retrieval/clusters_train.npy')
t2 = time.clock()
print('load tf/centroids/clusters', t2 - t1)
def getTestData():
start = time.clock()
global test_data, testNameList, trainNameList
test_data = pickle.load(open('./static/Data/data_test_converted.pkl', 'rb'))
test_data, testNameList, trainNameList = test_data['data'], list(test_data['testNameList']), list(
test_data['trainNameList'])
end = time.clock()
print('getTestData time: %s Seconds' % (end - start))
def getTrainData():
start = time.clock()
global train_data, trainNameList, trainTF, train_data_eNum, train_data_rNum
train_data = pickle.load(open('./static/Data/data_train_converted.pkl', 'rb'))
train_data, trainNameList, trainTF = train_data['data'], list(train_data['nameList']), list(train_data['trainTF'])
train_data_eNum = pickle.load(open('./static/Data/data_train_eNum.pkl', 'rb'))
train_data_eNum = train_data_eNum['eNum']
train_data_rNum = np.load('./static/Data/rNum_train.npy')
end = time.clock()
print('getTrainData time: %s Seconds' % (end - start))
def loadModel():
global model, train_data, trainNameList
start = time.clock()
model = mltest.load_model()
end = time.clock()
print('loadModel time: %s Seconds' % (end - start))
start = time.clock()
test = train_data[trainNameList.index("75119")]
mltest.test(model, FloorPlan(test, train=True))
end = time.clock()
print('test Model time: %s Seconds' % (end - start))
def LoadTestBoundary(request):
start = time.clock()
testName = request.GET.get('testName').split(".")[0]
test_index = testNameList.index(testName)
data = test_data[test_index]
data_js = {}
data_js["door"] = str(data.boundary[0][0]) + "," + str(data.boundary[0][1]) + "," + str(
data.boundary[1][0]) + "," + str(data.boundary[1][1])
ex = ""
for i in range(len(data.boundary)):
ex = ex + str(data.boundary[i][0]) + "," + str(data.boundary[i][1]) + " "
data_js['exterior'] = ex
end = time.clock()
print('LoadTestBoundary time: %s Seconds' % (end - start))
return HttpResponse(json.dumps(data_js), content_type="application/json")
def get_filter_func(mask, acc, num):
filters = [
None if not mask else (
np.equal if acc[i] else np.greater_equal
)
for i in range(len(mask))
]
def filter_func(data):
for i in range(len(filters)):
if (filters[i] is not None) and (not filters[i](data[i], num[i])): return False
return True
return filter_func
def filter_graph(graph_):
filters = graph_
def filter_graphfunc(data):
sub = data - filters
return ((sub >= 0).all())
return filter_graphfunc
def NumSearch(request):
start = time.clock()
data_new = json.loads(request.GET.get("userInfo"))
testName = data_new[0].split(".")[0]
test_index = testNameList.index(testName)
topkList = []
topkList.clear()
data = test_data[test_index]
multi_clusters=False
test_data_topk = rt.retrieval(data, 1000,multi_clusters)
if len(data_new) > 1:
roomactarr = data_new[1]
roomexaarr = data_new[2]
roomnumarr = [int(x) for x in data_new[3]]
test_num = train_data_rNum[test_data_topk]
filter_func = get_filter_func(roomactarr, roomexaarr, roomnumarr)
indices = np.where(list(map(filter_func, test_num)))
indices = list(indices)
if len(indices[0]) < 20:
topk = len(indices[0])
else:
topk = 20
topkList.clear()
for i in range(topk):
topkList.append(str(trainNameList[int(test_data_topk[indices[0][i]])]) + ".png")
end = time.clock()
print('NumberSearch time: %s Seconds' % (end - start))
return HttpResponse(json.dumps(topkList), content_type="application/json")
def FindTraindata(trainname):
start = time.clock()
train_index = trainNameList.index(trainname)
data = train_data[train_index]
data_js = {}
data_js["hsname"] = trainname
data_js["door"] = str(data.boundary[0][0]) + "," + str(data.boundary[0][1]) + "," + str(
data.boundary[1][0]) + "," + str(data.boundary[1][1])
print("testboundary", data_js["door"])
ex = ""
for i in range(len(data.boundary)):
ex = ex + str(data.boundary[i][0]) + "," + str(data.boundary[i][1]) + " "
data_js['exterior'] = ex
data_js["hsedge"] = [[int(u), int(v)] for u, v in data.edge[:, [0, 1]]]
hsbox = [[[float(x1), float(y1), float(x2), float(y2)], [mdul.room_label[cate][1]]] for
x1, y1, x2, y2, cate in data.box[:]]
external = np.asarray(data.boundary)
xmin, xmax = np.min(external[:, 0]), np.max(external[:, 0])
ymin, ymax = np.min(external[:, 1]), np.max(external[:, 1])
area_ = (ymax - ymin) * (xmax - xmin)
data_js["rmsize"] = [
[[20 * math.sqrt((float(x2) - float(x1)) * (float(y2) - float(y1)) / float(area_))], [mdul.room_label[cate][1]]]
for
x1, y1, x2, y2, cate in data.box[:]]
box_order = data.order
data_js["hsbox"] = []
for i in range(len(box_order)):
data_js["hsbox"].append(hsbox[int(float(box_order[i])) - 1])
data_js["rmpos"] = [[int(cate), str(mdul.room_label[cate][1]), float((x1 + x2) / 2), float((y1 + y2) / 2)] for
x1, y1, x2, y2, cate in data.box[:]]
end = time.clock()
print('find train data time: %s Seconds' % (end - start))
return data_js
def LoadTrainHouse(request):
trainname = request.GET.get("roomID").split(".")[0]
data_js = FindTraindata(trainname)
return HttpResponse(json.dumps(data_js), content_type="application/json")
'''
transfer the graph of the training data into the graph of the test data
'''
def TransGraph(request):
start = time.clock()
userInfo = request.GET.get("userInfo")
testname = userInfo.split(',')[0]
trainname = request.GET.get("roomID")
mlresult = mltest.get_userinfo(testname, trainname)
fp_end = mlresult
sio.savemat("./static/" + userInfo.split(',')[0].split('.')[0] + ".mat", {"data": fp_end.data})
data_js = {}
# fp_end hsedge
data_js["hsedge"] = (fp_end.get_triples(tensor=False)[:, [0, 2, 1]]).astype(np.float).tolist()
# fp_rmsize
external = np.asarray(fp_end.data.boundary)
xmin, xmax = np.min(external[:, 0]), np.max(external[:, 0])
ymin, ymax = np.min(external[:, 1]), np.max(external[:, 1])
area_ = (ymax - ymin) * (xmax - xmin)
data_js["rmsize"] = [
[[20 * math.sqrt((float(x2) - float(x1)) * (float(y2) - float(y1)) / float(area_))], [mdul.room_label[cate][1]]]
for
x1, y1, x2, y2, cate in fp_end.data.box[:]]
# fp_end rmpos
rooms = fp_end.get_rooms(tensor=False)
center = [[(x1 + x2) / 2, (y1 + y2) / 2] for x1, y1, x2, y2 in fp_end.data.box[:, :4]]
# boxes_pred
data_js["rmpos"] = []
for k in range(len(center)):
node = float(rooms[k]), mdul.room_label[int(rooms[k])][1], center[k][0], center[k][1], float(k)
data_js["rmpos"].append(node)
test_index = testNameList.index(testname.split(".")[0])
data = test_data[test_index]
ex = ""
for i in range(len(data.boundary)):
ex = ex + str(data.boundary[i][0]) + "," + str(data.boundary[i][1]) + " "
data_js['exterior'] = ex
data_js["door"] = str(data.boundary[0][0]) + "," + str(data.boundary[0][1]) + "," + str(
data.boundary[1][0]) + "," + str(data.boundary[1][1])
end = time.clock()
print('TransGraph time: %s Seconds' % (end - start))
return HttpResponse(json.dumps(data_js), content_type="application/json")
def AdjustGraph(request):
start = time.clock()
# newNode index-typename-cx-cy
# oldNode index-typename-cx-cy
# newEdge u-v
NewGraph = json.loads(request.GET.get("NewGraph"))
testname = request.GET.get("userRoomID")
trainname = request.GET.get("adptRoomID")
s = time.clock()
mlresult = mltest.get_userinfo_adjust(testname, trainname, NewGraph)
e = time.clock()
print('get_userinfo_adjust: %s Seconds' % (e - s))
fp_end = mlresult[0]
global boxes_pred
boxes_pred = mlresult[1]
data_js = {}
data_js["hsedge"] = (fp_end.get_triples(tensor=False)[:, [0, 2, 1]]).astype(np.float).tolist()
rooms = fp_end.get_rooms(tensor=False)
center = [[(x1 + x2) / 2, (y1 + y2) / 2] for x1, y1, x2, y2 in fp_end.data.box[:, :4]]
box_order = mlresult[2]
'''
handle the information of the room boxes
boxes_pred: the prediction from net
box_order: The order in which boxes are drawn
'''
room = []
for o in range(len(box_order)):
room.append(float((rooms[int(float(box_order[o][0])) - 1])))
boxes_end = []
for i in range(len(box_order)):
tmp = []
for j in range(4):
tmp.append(float(boxes_pred[int(float(box_order[i][0])) - 1][j]))
boxes_end.append(tmp)
data_js['roomret'] = []
for k in range(len(room)):
data = boxes_end[k], [mdul.room_label[int(room[k])][1]], box_order[k][0] - 1
data_js['roomret'].append(data)
# change the box size
global relbox
relbox = data_js['roomret']
global reledge
reledge = data_js["hsedge"]
test_index = testNameList.index(testname.split(".")[0])
data = test_data[test_index]
ex = ""
for i in range(len(data.boundary)):
ex = ex + str(data.boundary[i][0]) + "," + str(data.boundary[i][1]) + " "
data_js['exterior'] = ex
data_js["door"] = str(data.boundary[0][0]) + "," + str(data.boundary[0][1]) + "," + str(
data.boundary[1][0]) + "," + str(data.boundary[1][1])
external = np.asarray(data.boundary)
xmin, xmax = np.min(external[:, 0]), np.max(external[:, 0])
ymin, ymax = np.min(external[:, 1]), np.max(external[:, 1])
area_ = (ymax - ymin) * (xmax - xmin)
data_js['rmsize'] = []
for i in range(len(data_js['roomret'])):
rmsize = 20 * math.sqrt((float(data_js['roomret'][i][0][2]) - float(data_js['roomret'][i][0][0])) * (
float(data_js['roomret'][i][0][3]) - float(data_js['roomret'][i][0][1])) / float(area_)), \
data_js["roomret"][i][1][0]
data_js["rmsize"].append(rmsize)
data_js["rmpos"] = []
newGraph = NewGraph[0]
for i in range(len(data_js['roomret'])):
for k in range(len(newGraph)):
if (data_js['roomret'][i][1][0] == newGraph[k][1]):
x_center = int((data_js['roomret'][i][0][0] + data_js['roomret'][i][0][2]) / 2)
y_center = int((data_js['roomret'][i][0][1] + data_js['roomret'][i][0][3]) / 2)
x_graph = newGraph[k][2]
y_graph = newGraph[k][3]
if ((int(x_graph - 30) < x_center < int(x_graph + 30))):
node = float(rooms[k]), newGraph[k][1], x_center, y_center, float(
newGraph[k][0])
data_js["rmpos"].append(node)
newGraph.pop(k)
break
if ((int(y_graph - 30) < y_center < int(y_graph + 30))):
node = float(rooms[k]), newGraph[k][1], x_center, y_center, float(
newGraph[k][0])
data_js["rmpos"].append(node)
newGraph.pop(k)
break
fp_end.data = add_dw_fp(fp_end.data)
data_js["indoor"] = []
boundary = data.boundary
isNew = boundary[:, 3]
frontDoor = boundary[[0, 1]]
frontDoor = frontDoor[:, [0, 1]]
frontsum = frontDoor.sum(axis=1).tolist()
idx = frontsum.index(min(frontsum))
wallThickness = 3
if idx == 1:
frontDoor = frontDoor[[1, 0], :]
orient = boundary[0][2]
if orient == 0 or orient == 2:
frontDoor[0][0] = frontDoor[0][0] + wallThickness / 4
frontDoor[1][0] = frontDoor[1][0] - wallThickness / 4
if orient == 1 or orient == 3:
frontDoor[0][1] = frontDoor[0][1] + wallThickness / 4
frontDoor[1][1] = frontDoor[1][1] - wallThickness / 4
data_js["windows"] = []
for indx, x, y, w, h, r in fp_end.data.windows:
if w != 0:
tmp = [x + 2, y - 2, w - 2, 4]
data_js["windows"].append(tmp)
if h != 0:
tmp = [x - 2, y, 4, h]
data_js["windows"].append(tmp)
data_js["windowsline"] = []
for indx, x, y, w, h, r in fp_end.data.windows:
if w != 0:
tmp = [x + 2, y, w + x, y]
data_js["windowsline"].append(tmp)
if h != 0:
tmp = [x, y, x, h + y]
data_js["windowsline"].append(tmp)
sio.savemat("./static/" + testname.split(',')[0].split('.')[0] + ".mat", {"data": fp_end.data})
end = time.clock()
print('AdjustGraph time: %s Seconds' % (end - start))
return HttpResponse(json.dumps(data_js), content_type="application/json")
def RelBox(request):
id = request.GET.get("selectRect")
print(id)
global relbox
global reledge
rdirgroup=get_dir(id,relbox,reledge)
return HttpResponse(json.dumps(rdirgroup), content_type="application/json")
def get_dir(id,relbox,reledge):
rel = []
selectindex = int(id.split("_")[1])
select = np.zeros(4).astype(int)
for i in range(len(relbox)):
a = math.ceil(relbox[i][0][0]), math.ceil(relbox[i][0][1]), math.ceil(relbox[i][0][2]), math.ceil(
relbox[i][0][3]), int(relbox[i][2])
rel.append(a)
if (selectindex == int(relbox[i][2])):
# select:x1,x0,y0,y1.relbox:x0,y0,x1,y1
select[0] = math.ceil(relbox[i][0][2])
select[1] = math.ceil(relbox[i][0][0])
select[2] = math.ceil(relbox[i][0][1])
select[3] = math.ceil(relbox[i][0][3])
rel = np.array(rel)
df = pd.DataFrame({'x0': rel[:, 0], 'y0': rel[:, 1], 'x1': rel[:, 2], 'y1': rel[:, 3], 'rindex': rel[:, 4]})
group_label = [(0, 'x1', "right"),
(1, 'x0', "left"),
(2, 'y0', "top"),
(3, 'y1', "down")]
dfgroup = []
for i in range(len(group_label)):
dfgroup.append(df.groupby(group_label[i][1], as_index=True).get_group(name=select[i]))
rdirgroup = []
for i in range(len(dfgroup)):
dir = dfgroup[i]
rdir = []
for k in range(len(dir)):
idx = (dir.loc[dir['rindex'] == (dir.iloc[[k]].values)[0][4]].index.values)[0]
rdir.append(relbox[idx][1][0].__str__() + "_" + (dir.iloc[[k]].values)[0][4].__str__())
rdirgroup.append(rdir)
reledge = np.array(reledge)
data1 = reledge[np.where((reledge[:, [0]] == selectindex))[0]]
data2 = reledge[np.where((reledge[:, [1]] == selectindex))[0]]
reledge1 = np.vstack((data1, data2))
return rdirgroup
def Save_Editbox(request):
global indxlist,boxes_pred
NewGraph = json.loads(request.GET.get("NewGraph"))
NewLay = json.loads(request.GET.get("NewLay"))
userRoomID = request.GET.get("userRoomID")
adptRoomID = request.GET.get("adptRoomID")
NewLay=np.array(NewLay)
NewLay=NewLay[np.argsort(NewLay[:, 1])][:,2:]
NewLay=NewLay.astype(float).tolist()
test_index = testNameList.index(userRoomID.split(".")[0])
test_ = test_data[test_index]
Boundary = test_.boundary
boundary=[[float(x),float(y),float(z),float(k)] for x,y,z,k in list(Boundary)]
test_fp =FloorPlan(test_)
train_index = trainNameList.index(adptRoomID.split(".")[0])
train_ =train_data[train_index]
train_fp =FloorPlan(train_,train=True)
fp_end = test_fp.adapt_graph(train_fp)
fp_end.adjust_graph()
newNode = NewGraph[0]
newEdge = NewGraph[1]
oldNode = NewGraph[2]
temp = []
for newindx, newrmname, newx, newy,scalesize in newNode:
for type, oldrmname, oldx, oldy, oldindx in oldNode:
if (int(newindx) == oldindx):
tmp=int(newindx), (newx - oldx), ( newy- oldy),float(scalesize)
temp.append(tmp)
newbox=[]
if mltest.adjust==True:
oldbox = []
for i in range(len(boxes_pred)):
indxtmp=[boxes_pred[i][0],boxes_pred[i][1],boxes_pred[i][2],boxes_pred[i][3],boxes_pred[i][0]]
oldbox.append(indxtmp)
if mltest.adjust==False:
indxlist=[]
oldbox=fp_end.data.box.tolist()
for i in range(len(oldbox)):
indxlist.append([oldbox[i][4]])
indxlist=np.array(indxlist)
adjust=True
oldbox=fp_end.data.box.tolist()
X=0
Y=0
for i in range(len(oldbox)):
X= X+(oldbox[i][2]-oldbox[i][0])
Y= Y+(oldbox[i][3]-oldbox[i][1])
x_ave=(X/len(oldbox))/2
y_ave=(Y/len(oldbox))/2
index_mapping = {}
# The room that already exists
# Move: Just by the distance
for newindx, tempx, tempy,scalesize in temp:
index_mapping[newindx] = len(newbox)
tmpbox=[]
scalesize = int(scalesize)
if scalesize<1:
scale = math.sqrt(scalesize)
scalex = (oldbox[newindx][2] - oldbox[newindx][0]) * (1 - scale) / 2
scaley = (oldbox[newindx][3] - oldbox[newindx][1]) * (1 - scale) / 2
tmpbox = [(oldbox[newindx][0] + tempx) + scalex, (oldbox[newindx][1] + tempy)+scaley,
(oldbox[newindx][2] + tempx) - scalex, (oldbox[newindx][3] + tempy) - scaley, oldbox[newindx][4]]
if scalesize == 1:
tmpbox = [(oldbox[newindx][0] + tempx) , (oldbox[newindx][1] + tempy) ,(oldbox[newindx][2] + tempx), (oldbox[newindx][3] + tempy), oldbox[newindx][4]]
if scalesize>1:
scale=math.sqrt(scalesize)
scalex = (oldbox[newindx][2] - oldbox[newindx][0]) * ( scale-1) / 2
scaley = (oldbox[newindx][3] - oldbox[newindx][1]) * (scale-1) / 2
tmpbox = [(oldbox[newindx][0] + tempx) - scalex, (oldbox[newindx][1] + tempy) - scaley,
(oldbox[newindx][2] + tempx) + scalex, (oldbox[newindx][3] + tempy) + scaley, oldbox[newindx][4]]
newbox.append(tmpbox)
# The room just added
# Move: The room node with the average size of the existing room
for newindx, newrmname, newx, newy,scalesize in newNode:
if int(newindx)>(len(oldbox)-1):
scalesize=int(scalesize)
index_mapping[int(newindx)] = (len(newbox))
tmpbox=[]
if scalesize < 1:
scale = math.sqrt(scalesize)
scalex = x_ave * (1 - scale) / 2
scaley = y_ave* (1 - scale) / 2
tmpbox = [(newx-x_ave) +scalex,(newy-y_ave) +scaley,(newx+x_ave)-scalex,(newy+y_ave)-scaley,vocab['object_name_to_idx'][newrmname]]
if scalesize == 1:
tmpbox = [(newx - x_ave), (newy - y_ave), (newx + x_ave), (newy + y_ave),vocab['object_name_to_idx'][newrmname]]
if scalesize > 1:
scale = math.sqrt(scalesize)
scalex = x_ave * (scale - 1) / 2
scaley = y_ave * (scale - 1) / 2
tmpbox = [(newx-x_ave) - scalex, (newy-y_ave) - scaley,(newx+x_ave) + scalex, (newy+y_ave) + scaley,vocab['object_name_to_idx'][newrmname]]
# tmpboxin = [(newx-x_ave) ,(newy-y_ave) ,(newx+x_ave) ,(newy+y_ave) ,vocab['object_name_to_idx'][newrmname]]
# print(tmpboxin)
# print(tmpbox)
# print(scalesize)
newbox.append(tmpbox)
fp_end.data.box=np.array(newbox)
adjust_Edge=[]
for u, v in newEdge:
tmp=[index_mapping[int(u)],index_mapping[int(v)], 0]
adjust_Edge.append(tmp)
fp_end.data.edge=np.array(adjust_Edge)
rType = fp_end.get_rooms(tensor=False)
rEdge = fp_end.get_triples(tensor=False)[:, [0, 2, 1]]
Edge = [[float(u), float(v), float(type2)] for u, v, type2 in rEdge]
Box=NewLay
boundary_mat = matlab.double(boundary)
rType_mat = matlab.double(rType.tolist())
Edge_mat = matlab.double(Edge)
Box_mat=matlab.double(Box)
fp_end.data.boundary =np.array(boundary)
fp_end.data.rType =np.array(rType).astype(int)
fp_end.data.refineBox=np.array(Box)
fp_end.data.rEdge=np.array(Edge)
box_refine = engview.align_fp(boundary_mat, Box_mat, rType_mat,Edge_mat ,18,False, nargout=3)
box_out=box_refine[0]
box_order=box_refine[1]
rBoundary=box_refine[2]
fp_end.data.newBox = np.array(box_out)
fp_end.data.order = np.array(box_order)
fp_end.data.rBoundary = [np.array(rb) for rb in rBoundary]
fp_end.data = add_dw_fp(fp_end.data)
sio.savemat("./static/" + userRoomID + ".mat", {"data": fp_end.data})
flag=1
return HttpResponse(json.dumps(flag), content_type="application/json")
def TransGraph_net(request):
userInfo = request.GET.get("userInfo")
testname = userInfo.split(',')[0]
trainname = request.GET.get("roomID")
mlresult = mltest.get_userinfo_net(testname, trainname)
fp_end = mlresult[0]
boxes_pred = mlresult[1]
data_js = {}
# fp_end hsedge
data_js["hsedge"] = (fp_end.get_triples(tensor=False)[:, [0, 2, 1]]).astype(np.float).tolist()
# fp_end rmpos
rooms = fp_end.get_rooms(tensor=False)
room = rooms
center = [[(x1 + x2) / 2, (y1 + y2) / 2] for x1, y1, x2, y2 in fp_end.data.box[:, :4]]
# boxes_pred
data_js["rmpos"] = []
for k in range(len(center)):
node = float(room[k]), mdul.room_label[int(room[k])][1], center[k][0], center[k][1]
data_js["rmpos"].append(node)
boxes_end = boxes_pred.tolist()
data_js['roomret'] = []
for k in range(len(room)):
data = boxes_end[k], [mdul.room_label[int(room[k])][1]]
data_js['roomret'].append(data)
test_index = testNameList.index(testname.split(".")[0])
data = test_data[test_index]
ex = ""
for i in range(len(data.boundary)):
ex = ex + str(data.boundary[i][0]) + "," + str(data.boundary[i][1]) + " "
data_js['exterior'] = ex
x0, x1 = np.min(data.boundary[:, 0]), np.max(data.boundary[:, 0])
y0, y1 = np.min(data.boundary[:, 1]), np.max(data.boundary[:, 1])
data_js['bbxarea'] = float((x1 - x0) * (y1 - y0))
return HttpResponse(json.dumps(data_js), content_type="application/json")
def GraphSearch(request):
s=time.clock()
# Graph
Searchtype = ["BedRoom", "Bathroom", "Kitchen", "Balcony", "Storage"]
BedRoomlist = ["MasterRoom", "SecondRoom", "GuestRoom", "ChildRoom", "StudyRoom"]
NewGraph = json.loads(request.GET.get("NewGraph"))
testname = request.GET.get("userRoomID")
newNode = NewGraph[0]
newEdge = NewGraph[1]
r_Num = np.zeros((1, 14)).tolist()
r_Mask = np.zeros((1, 14)).tolist()
r_Acc = np.zeros((1, 14)).tolist()
r_Num[0][0] = 1
r_Mask[0][0] = 1
r_Acc[0][0] = 1
for indx, rmname, x, y, scalesize in newNode:
r_Num[0][mdul.vocab['object_name_to_idx'][rmname]] = r_Num[0][mdul.vocab['object_name_to_idx'][rmname]] + 1
r_Mask[0][mdul.vocab['object_name_to_idx'][rmname]] = 1
if rmname in BedRoomlist:
r_Num[0][13] = r_Num[0][13] + 1
r_Mask[0][13] = 1
test_index = testNameList.index(testname.split(".")[0])
topkList = []
topkList.clear()
data = test_data[test_index]
Numrooms = json.loads(request.GET.get("Numrooms"))
roomactarr = Numrooms[0]
roomexaarr = Numrooms[1]
roomnumarr = [int(x) for x in Numrooms[2]]
test_data_topk=np.arange(0,74995)
if np.sum(roomactarr) != 1 or np.sum(roomexaarr) != 1 or np.sum(roomnumarr) != 1:
test_num = train_data_rNum[test_data_topk]
# Number filter
filter_func = get_filter_func(roomactarr, roomexaarr, roomnumarr)
indices = np.where(list(map(filter_func, test_num)))
# print("np.where(list(map(fil", test_num)
indices = list(indices)
test_data_topk = test_data_topk[indices[0]]
test_num = train_data_eNum[test_data_topk]
# Graph filter
edgematrix = np.zeros((5, 5))
for indx1, indx2 in newEdge:
tmp1 = ""
tmp2 = ""
for indx, rmname, x, y, scalesize in newNode:
if indx1 == indx:
if rmname in BedRoomlist:
tmp1 = "BedRoom"
else:
tmp1 = rmname
for indx, rmname, x, y, scalesize in newNode:
if indx2 == indx:
if rmname in BedRoomlist:
tmp2 = "BedRoom"
else:
tmp2 = rmname
if tmp1 != "" and tmp2 != "":
edgematrix[Searchtype.index(tmp1)][Searchtype.index(tmp2)] = edgematrix[Searchtype.index(tmp1)][
Searchtype.index(tmp2)] + 1
edgematrix[Searchtype.index(tmp2)][Searchtype.index(tmp1)] = edgematrix[Searchtype.index(tmp2)][
Searchtype.index(tmp1)] + 1
edge = edgematrix.reshape((1, 25))
filter_graphfunc = filter_graph(edge)
# rNum_list
eNumData = []
indices = np.where(list(map(filter_graphfunc, test_num)))
indices = list(indices)
tf_trainsub=tf_train[test_data_topk[indices[0]]]
re_data = train_data[test_data_topk[indices[0]]]
test_data_tftopk=retrieve_bf(tf_trainsub, data, k=20)
re_data=re_data[test_data_tftopk]
if len(re_data) < 20:
topk = len(re_data)
else:
topk = 20
topkList = []
for i in range(topk):
topkList.append(str(re_data[i].name) + ".png")
e=time.clock()
print('Graph Search time: %s Seconds' % (e - s))
print("topkList", topkList)
return HttpResponse(json.dumps(topkList), content_type="application/json")
def retrieve_bf(tf_trainsub, datum, k=20):
# compute tf for the data boundary
x, y = rt.compute_tf(datum.boundary)
y_sampled = rt.sample_tf(x, y, 1000)
dist = np.linalg.norm(y_sampled - tf_trainsub, axis=1)
if k > np.log2(len(tf_trainsub)):
index = np.argsort(dist)[:k]
else:
index = np.argpartition(dist, k)[:k]
index = index[np.argsort(dist[index])]
return index
if __name__ == "__main__":
pass |