File size: 11,516 Bytes
06db6e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import torch
from torch.utils.data import Dataset
import numpy as np
import scipy.io as sio
import cv2
import copy
from model.utils import *

class FloorPlan():

    def __init__(self, data, rot=None,fliplr=False):
        self.data = copy.deepcopy(data)

        ''' transform '''
        if rot is not None:
            theta = self._get_rot()
            self.data.gtBoxNew = align_box(self.data.gtBoxNew[:,[1,0,3,2]],theta,rot)[:,[1,0,3,2]]
            self.data.boundary[:,[1,0]] = align_points(self.data.boundary[:,[1,0]],theta,rot)
        
        if fliplr:
            self.data.gtBoxNew[:,[1,0,3,2]] = fliplr_box(self.data.gtBoxNew[:,[1,0,3,2]])
            self.data.boundary[:,[1,0]] = fliplr_2D(self.data.boundary[:,[1,0]])

    def _get_rot(self):
        door_line = self.data.boundary[:2, :2]  # [:,[1,0]]
        c = door_line.mean(0) - np.array([127.5,127.5])
        theta = np.arctan2(c[1], c[0]) + np.pi  # [-pi,pi]
        return theta

    def get_input_boundary(self, tensor=True):
        external = self.data.boundary[:, :2]
        door = self.data.boundary[:2, :2]

        boundary = np.zeros((128, 128), dtype=float)
        inside = np.zeros((128, 128), dtype=float)
        front = np.zeros((128, 128), dtype=float)

        pts = np.concatenate([external, external[:1]]) // 2
        pts_door = door // 2

        cv2.fillPoly(inside, pts.reshape(1, -1, 2), 1.0)
        cv2.polylines(boundary, pts.reshape(1, -1, 2), True, 1.0, 3)
        cv2.polylines(boundary, pts_door.reshape(1, -1, 2), True, 0.5, 3)
        cv2.polylines(front, pts_door.reshape(1, -1, 2), True, 1.0, 3)

        input_image = np.stack([inside, boundary, front], -1)
        if tensor: input_image = torch.tensor(input_image).permute((2, 0, 1)).float()
        return input_image

    def get_inside_box(self, tensor=True):
        boundary = self.data.boundary[:, :2]

        X, Y = np.linspace(0, 1, 256), np.linspace(0, 1, 256)
        x0, x1 = np.min(boundary[:, 0]), np.max(boundary[:, 0])
        y0, y1 = np.min(boundary[:, 1]), np.max(boundary[:, 1])
        box = np.array([[X[x0], Y[y0], X[x1], Y[y1]]])
        if tensor: box = torch.tensor(box).float()
        return box

    def get_rooms(self, tensor=True):
        rooms = self.data.rType
        if tensor: rooms = torch.tensor(rooms).long()
        return rooms

    def get_attributes(self, gsize=5, alevel=10, relative=True, tensor=True):
        boxes = self.data.gtBoxNew[:,[1,0,3,2]]
        boundary = self.data.boundary[:,:2]

        h, w = 256, 256
        if relative:
            x0, x1 = np.min(boundary[:, 0]), np.max(boundary[:, 0])+1
            y0, y1 = np.min(boundary[:, 1]), np.max(boundary[:, 1])+1
            h, w = y1 - y0, x1 - x0
            boxes = boxes - np.array([y0, x0, y0, x0], dtype=float)

        boxes /= np.array([h, w, h, w])
        boxes[:, 2:] -= boxes[:, :2]  # y1,x1->h,w
        boxes[:, :2] += boxes[:, 2:] / 2  # y0,x0->yc,xc
        
        l = len(boxes)
        gbins = np.linspace(0,1,gsize+1) # [1,gsize]
        gbins[0],gbins[-1]=-np.inf,np.inf
        abins = np.linspace(0,1,alevel+1) # [1,gsize]
        abins[0],abins[-1]=-np.inf,np.inf
        
        attributes = np.zeros((l,gsize*gsize+alevel))
        # pos: xc*gsize+yc*gsize*gsize
        attributes[range(l),(np.digitize(boxes[:,0],gbins)-1)*gsize+np.digitize(boxes[:,1],gbins)-1]=1
        # area:(w*h)
        attributes[range(l),gsize*gsize+np.digitize(boxes[:,2:].prod(1),abins)-1]=1
        if tensor: attributes = torch.tensor(attributes).float()
        return attributes

    def get_triples(self, random=False, tensor=True):
        boxes = self.data.gtBoxNew[:, [1, 0, 3, 2]]
        vocab = get_vocab()

        triples = []
        # add edge relation
        for u, v, _ in self.data.rEdge:
            # Todo: random order for edge
            # if random and np.random.random() > 0.5:
            #     u, v = v, u
            uy0, ux0, uy1, ux1 = boxes[u]
            vy0, vx0, vy1, vx1 = boxes[v]
            uc = (uy0 + uy1) / 2, (ux0 + ux1) / 2
            vc = (vy0 + vy1) / 2, (vx0 + vx1) / 2

            # surrounding/inside -> X four quadrants
            if ux0 < vx0 and ux1 > vx1 and uy0 < vy0 and uy1 > vy1:
                relation = 'surrounding'
            elif ux0 >= vx0 and ux1 <= vx1 and uy0 >= vy0 and uy1 <= vy1:
                relation = 'inside'
            else:
                relation = point_box_relation(uc, boxes[v])

            triples.append([u, vocab['pred_name_to_idx'][relation], v])

        triples = np.array(triples, dtype=int)
        if tensor: triples = torch.tensor(triples).long()
        return triples

    def get_layout_image(self,tensor=True):
        img = np.full((128,128),13,dtype=np.uint8)
        boundary = self.data.boundary[:,:2]
        boundary = np.concatenate([boundary, boundary[:1]])

        cv2.fillPoly(img, (boundary//2).reshape(1, -1, 2), 0)

        order = self.data.order-1
        rType = self.data.rType[order]
        rBox = self.data.gtBoxNew[order]

        for i in range(len(rType)):
            t = rType[i]
            if t==0: continue
            b = rBox[i]//2
            img[b[1]:b[3],b[0]:b[2]]=t
        
        cv2.polylines(img, (boundary//2).reshape(1, -1, 2), True,14)

        if tensor: img = torch.tensor(img).long()
        return img

    def get_boxes(self,relative=True,tensor=True):
        boxes = self.data.gtBoxNew[:, [1, 0, 3, 2]]
        boundary = self.data.boundary[:,:2]
        
        X,Y = np.linspace(0,1,256),np.linspace(0,1,256)

        if relative:
            x0, x1 = np.min(boundary[:, 0]), np.max(boundary[:, 0])+1
            y0, y1 = np.min(boundary[:, 1]), np.max(boundary[:, 1])+1
            h, w = y1 - y0, x1 - x0
            X,Y = np.linspace(0,1,w),np.linspace(0,1,h)
            boxes = boxes-np.array([y0,x0,y0,x0])

        norm = lambda box:np.array([
            X[max(box[1],0)],
            Y[max(box[0],0)],
            X[min(box[3]-1,w-1)],
            Y[min(box[2]-1,h-1)]
        ])
        
        boxes = np.apply_along_axis(norm,1,boxes)
        boxes[:,2:]-=boxes[:,:2]
        boxes[:,:2]+=boxes[:,2:]/2
        if tensor: 
            boxes = torch.tensor(boxes).float()
        return boxes

    def get_inside_coords(self,size=(32,32),tensor=True):
        h,w = size
        X = np.linspace(0,1,w)
        Y = np.linspace(0,1,h)
        img = np.zeros(size)
        boundary = self.data.boundary[:,:2]
        boundary = boundary*np.array(size)//256

        cv2.fillPoly(img, boundary.reshape(1, -1, 2), 1)

        coords = np.where(img>0)
        coords = np.stack((X[coords[1]],Y[coords[0]]),1)
        if tensor: coords = torch.tensor(coords).unsqueeze(0).float()
        return coords

    def get_test_data(self, tensor=True):
        name = self.data.name

        boundary = self.get_input_boundary(tensor=tensor)
        inside_box = self.get_inside_box(tensor=tensor)
        rooms = self.get_rooms(tensor=tensor)
        attrs = self.get_attributes(tensor=tensor)
        triples = self.get_triples(random=False, tensor=tensor)
        return boundary, inside_box, rooms, attrs, triples, name

    def get_train_data(self, tensor=True):
        name = self.data.name

        boundary = self.get_input_boundary(tensor=tensor)
        inside_box = self.get_inside_box(tensor=tensor)
        rooms = self.get_rooms(tensor=tensor)
        attrs = self.get_attributes(tensor=tensor)
        triples = self.get_triples(random=False, tensor=tensor)

        # gt
        layout = self.get_layout_image(tensor=tensor)
        boxes = self.get_boxes(tensor=tensor)
        
        # constrains
        inside_coords = self.get_inside_coords(tensor=tensor)
        
        return boundary,inside_box,rooms,attrs,triples,layout,boxes,inside_coords,name

class FloorPlanDataset(Dataset):
    def __init__(self,data_path):
        self.data = sio.loadmat(data_path, squeeze_me=True, struct_as_record=False)['data']

        self.train = True if 'train' in data_path else False
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self,i):
        if self.train:
            rot = np.random.randint(0,4)
            fliplr = np.random.random()>0.5
            fp = FloorPlan(self.data[i],rot=rot,fliplr=fliplr)
            return fp.get_train_data()
        else:
            fp = FloorPlan(self.data[i])
            return fp.get_train_data()
    
def floorplan_collate_fn(batch):
    all_boundary = []
    all_inside_box = []
    all_objs = []
    all_attrs = []
    all_triples = []

    all_layout = []
    all_boxes = []

    all_inside_coords = []
    
    all_obj_to_img = []
    all_triple_to_img = []

    all_name = []

    obj_offset = 0
    for i, (
        boundary,
        inside_box,
        rooms,
        attrs,
        triples,
        layout,
        boxes,
        inside_coords,
        name
        ) in enumerate(batch):
        if rooms.dim() == 0 or triples.dim() == 0:
            continue
        O, T = rooms.size(0), triples.size(0)

        all_boundary.append(boundary[None])
        all_inside_box.append(inside_box)

        all_objs.append(rooms)
        all_attrs.append(attrs)
        triples = triples.clone()
        triples[:, 0] += obj_offset
        triples[:, 2] += obj_offset
        all_triples.append(triples)

        all_layout.append(layout[None])
        all_boxes.append(boxes)
        all_inside_coords.append(inside_coords)

        all_name.append(name)
        
        all_obj_to_img.append(torch.LongTensor(O).fill_(i))
        all_triple_to_img.append(torch.LongTensor(T).fill_(i))

        obj_offset += O

    all_boundary = torch.cat(all_boundary)
    all_inside_box = torch.cat(all_inside_box)

    all_objs = torch.cat(all_objs)
    all_attrs = torch.cat(all_attrs)
    all_triples = torch.cat(all_triples)

    all_layout = torch.cat(all_layout)
    all_boxes = torch.cat(all_boxes)

    all_obj_to_img = torch.cat(all_obj_to_img)
    all_triple_to_img = torch.cat(all_triple_to_img)

    out = (
        all_boundary,
        all_inside_box, 
        all_objs,
        all_attrs, 
        all_triples,

        all_layout, 
        all_boxes, 

        all_inside_coords, 
        
        all_obj_to_img,
        all_triple_to_img,
        all_name
    )
    return out
    

def vis_fp(fp,size=(256,256)):
    cmap = get_color_map()

    img = np.full((256, 256, 4), 0, dtype=np.uint8)

    boundary = fp.data.boundary[:,:2]
    boundary = np.concatenate([boundary, boundary[:1]])
    door = fp.data.boundary[:2, :2]

    c = cmap[0].tolist()
    cv2.fillPoly(img, boundary.reshape(1, -1, 2), (c[0],c[1],c[2],255))

    order = fp.data.order-1
    rType = fp.data.rType[order]
    rBox = fp.data.gtBoxNew[order]

    for i in range(len(rType)):
        t = rType[i]
        if t==0: continue
        b = rBox[i]
        c = cmap[t].tolist()
        cv2.rectangle(img, (b[0],b[1]),(b[2]-1,b[3]-1), (c[0],c[1],c[2],255),-1)
        c = cmap[-1].tolist()
        cv2.rectangle(img, (b[0],b[1]),(b[2]-1,b[3]-1), (c[0],c[1],c[2],255),3)
        cv2.putText(img,f"{i}",((b[0]+b[2])//2,(b[1]+b[3])//2),cv2.FONT_HERSHEY_PLAIN,1,(0,0,0,255))

    c = cmap[-3].tolist()
    cv2.polylines(img, boundary.reshape(1, -1, 2), True, (c[0],c[1],c[2],255),3)
    
    c = cmap[-2].tolist()
    cv2.polylines(img, door.reshape(1, -1, 2), True, (c[0],c[1],c[2],255),3)

    if size!=(256,256): return cv2.resize(img,size)
    return img

if __name__ == "__main__":
    pass