Spaces:
Runtime error
Runtime error
File size: 16,789 Bytes
06db6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
import torch
from torch import nn
import math
import model.box_utils as box_utils
# fragment
# boundary
def cropped_box_iou(bboxes_pred,bboxes_gt,mask):
H,W = mask.shape
bboxes_pred = box_utils.norms_to_indices(bboxes_pred,W,H)
bboxes_gt = box_utils.norms_to_indices(bboxes_gt,W,H)
ious = torch.zeros(len(bboxes_pred)).to(bboxes_pred).float()
for i in range(len(bboxes_pred)):
box_pred = bboxes_pred[i]
box_gt = bboxes_gt[i]
mask_pred = mask.new_zeros(H,W)
mask_gt = mask.new_zeros(H,W)
mask_pred[box_pred[1]:box_pred[3],box_pred[0]:box_pred[2]]=1
mask_gt[box_gt[1]:box_gt[3],box_gt[0]:box_gt[2]]=1
mask_pred = mask_pred*mask
mask_gt = mask_gt*mask
union = (mask_pred+mask_gt)
intersection = (mask_pred*mask_gt)
ious[i] = len(intersection.nonzero())/len(union.nonzero())
return ious
def compose_by_cateogry(boxes,objs,category):
H,W = category.shape
image = torch.zeros_like(category).to(category)
boxes = box_utils.norms_to_indices(boxes,H,W)
overlaps = category.new_zeros(H,W,len(boxes))
for i,box in enumerate(boxes):
#overlap = image[box[1]:box[3],box[0]:box[2]].nonzero()+box[[1,0]]
overlaps[box[1]:box[3],box[0]:box[2],i] = 1
image[box[1]:box[3],box[0]:box[2]] = objs[i]
overlap_vectors = overlaps.view(-1,len(boxes)).unique(dim=0)
for vector in overlap_vectors:
if vector.sum()<2: continue
overlap_region = (overlaps==vector).prod(-1).nonzero()
unique,count = category[overlap_region[:,0],overlap_region[:,1]].unique(return_counts=True)
overlap_objs = objs[vector.bool()]
valid_u = [True if u in overlap_objs else False for u in unique]
count = count[valid_u]
unique = unique[valid_u]
if len(unique)>0:
winner = unique[count.argmax()]
image[overlap_region[:,0],overlap_region[:,1]] = winner
return image
def sample_fragment(step=2):
"""
Parameters:
----------
step: int, sample step in linspace [0,1]
Returns:
----------
ret: [step^step,2]
"""
return torch.stack(
torch.meshgrid(
torch.linspace(0,1,step),
torch.linspace(0,1,step)
)
,dim=-1).reshape(-1,2)
def sample_boundary(step=2):
"""
Parameters:
----------
step: int, sample step in linspace [0,1]
Returns:
----------
ret: [step*4,2]
"""
return torch.cat([
torch.stack(torch.meshgrid(
torch.linspace(0,1,2),
torch.linspace(0,1,step)
),dim=-1).reshape(-1,2),
torch.stack(torch.meshgrid(
torch.linspace(0,1,step),
torch.linspace(0,1,2)
),dim=-1).reshape(-1,2)
])
def fragment_outside_box(fragments,boxes):
"""
if points in fragment outside box
Calculate line distance among points of fragment i and lines of box j, get [P,B,4]
if all 4 values of a point are great than or equal to 0, the point is inside the box
else the point is in outside the box
Parameters:
----------
fragments: [F,FP,2]
boxes: [B,4]
Return:
----------
ret: [F,FP,B]
"""
assert fragments.dim()==3
F,FP,_ = fragments.shape
B,_ = boxes.shape
diff = torch.cat([
fragments.view(F,FP,1,2)-boxes[:,:2].view(1,1,B,2),
boxes[:,2:].view(1,1,B,2)-fragments.view(F,FP,1,2)
],dim=-1)
return ((diff>=0).sum(-1)!=4).float()
def fragment_box_distance(fragments,box_points):
"""
calcuate distance among fragments of fragmaent_i and box_points of box_j
get the smallest distance for each point of box_i to box_j
Parameters:
----------
fragments: [F,FP,2]
box_points: [B,BP,2]
Return:
----------
ret: [F,FP,B]
"""
F,FP,_ = fragments.shape
B,BP,_ = box_points.shape
# [F,FP,B,BP] -> [F,FP,B]
#return (fragments.view(F,FP,1,1,2)-box_points.view(1,1,B,BP,2)).norm(dim=-1).min(-1)[0]
return (fragments.view(F,FP,1,1,2)-box_points.view(1,1,B,BP,2)).pow(2).sum(-1).min(-1)[0]
def coverage_loss(boxes,fragments,step=2):
"""
boxes can cover all points in fragments
Parameters:
----------
boxes: [B,4], NBoxes with (x0,y0,x1,y1)
fragments: [F,FP,2], NBox wit (x,y)
"""
BP = step*4
B, _ = boxes.shape
F,FP, _ = fragments.shape
box_wh=boxes[:,2:]-boxes[:,:2]
# [B,BP,2]
box_points = sample_boundary(step=step).view(1,BP,2)*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [F,FP,B]
f_out_box = fragment_outside_box(fragments,boxes)
# [F,FP,B]
f_b_dist = fragment_box_distance(fragments,box_points)
# [F,FP]
return (f_b_dist*f_out_box).min(-1)[0].sum()/FP
def inside_loss(boxes,fragment_boxes,step=2):
"""
all points on the boundary of boxes are inside fragment_boxes
Parameters:
----------
boxes: [B,4], NBoxes with (x0,y0,x1,y1)
fragment_boxes: [F,4], NBox wit (x,y)
"""
B, _ = boxes.shape
P = step*4
F, _ = fragment_boxes.shape
box_wh=boxes[:,2:]-boxes[:,:2]
fragment_wh = fragment_boxes[:,2:]-fragment_boxes[:,:2]
# [B,BP,2]
box_fragments = sample_boundary(step=step).view(1,P,2)*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [F,FP,2]
fragment_boundaries = sample_boundary(step=step).view(1,P,2)*fragment_wh.view(F,1,2)+fragment_boxes[:,:2].view(F,1,2)
# [B,BP,F]
f_out_box = fragment_outside_box(box_fragments,fragment_boxes)
# [B,BP,F]
f_b_dist = fragment_box_distance(box_fragments,fragment_boundaries)
# [B,BP]
return (f_b_dist*f_out_box).sum()/(B*P)
def mutex_loss(boxes,step=2):
"""
sum of min-pixel-boundary distance / sum of pixels in boxes
Parameters:
----------
boxes: B*4, bboxes with (x0,y0,x1,y1)
ref_points: P*2, bbox wit (x,y)
"""
B = boxes.shape[0]
BP = step*4
FP = step*step
box_wh=boxes[:,2:]-boxes[:,:2]
# [B,FP,2]
fragments = sample_fragment(step=step).view(1,FP,2)*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [B,BP,2]
box_points = sample_boundary(step=step).view(1,BP,2)*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [B,FP,B]
f_out_box = fragment_outside_box(fragments,boxes)
# [B,FP,B] B个Box的PP个点与B个Box的最小距离
f_b_dist = fragment_box_distance(fragments,box_points)
return (f_b_dist*f_out_box).sum()/(B*FP-B)
class InsideLoss(nn.Module):
def __init__(self,nsample=100,cuda=True):
super(InsideLoss,self).__init__()
self.bstep = round(nsample/4)
self.fstep = round(math.sqrt(nsample))
self.BP = self.bstep*4
self.FP = self.fstep*self.fstep
self.boundary = sample_boundary(step=self.bstep).view(1,self.BP,2)
self.fragment = sample_fragment(step=self.fstep).view(1,self.FP,2)
if cuda:
self.boundary=self.boundary.cuda()
self.fragment=self.fragment.cuda()
def _inside_loss(self,boxes,fragment_boxes):
B, _ = boxes.shape
F, _ = fragment_boxes.shape
box_wh=boxes[:,2:]-boxes[:,:2]
fragment_wh = fragment_boxes[:,2:]-fragment_boxes[:,:2]
# [B,FP,2]
box_fragments = self.fragment*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [F,BP,2]
fragment_boundaries = self.boundary*fragment_wh.view(F,1,2)+fragment_boxes[:,:2].view(F,1,2)
# [B,FP,F]
f_out_box = fragment_outside_box(box_fragments,fragment_boxes)
# [B,FP,F]
f_b_dist = fragment_box_distance(box_fragments,fragment_boundaries)
# [B,FP]
return (f_b_dist*f_out_box).sum()/(B*self.FP)
def test(self,boxes,fragment_boxes):
with torch.no_grad():
return self._inside_loss(boxes,fragment_boxes)
def forward(self,boxes,fragment_boxes,obj_to_img,reduction="mean"):
N = obj_to_img.data.max().item() + 1
boxes = box_utils.centers_to_extents(boxes)
losses = []
for i in range(N):
obj_to_i = (obj_to_img==i).nonzero().view(-1)
loss = self._inside_loss(boxes[obj_to_i],fragment_boxes[[i]])
losses.append(loss)
return torch.mean(torch.stack(losses))
class CoverageLoss(nn.Module):
def __init__(self,nsample=100,cuda=True):
super(CoverageLoss,self).__init__()
self.step = round(nsample/4)
self.BP = self.step*4
self.boundary = sample_boundary(step=self.step).view(1,self.BP,2)
self.boundary = self.boundary.cuda()
def _coverage_loss(self,boxes,fragments):
B, _ = boxes.shape
F,FP, _ = fragments.shape
box_wh=boxes[:,2:]-boxes[:,:2]
# [B,BP,2]
box_points = self.boundary*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [F,FP,B]
f_out_box = fragment_outside_box(fragments,boxes)
# [F,FP,B]
f_b_dist = fragment_box_distance(fragments,box_points)
# [F,FP]
return (f_b_dist*f_out_box).min(-1)[0].sum()/FP
def test(self,boxes,fragments):
with torch.no_grad():
return self._coverage_loss(boxes,fragments)
def forward(self,boxes,fragments,obj_to_img,reduction="mean"):
N = obj_to_img.data.max().item() + 1
boxes = box_utils.centers_to_extents(boxes)
losses = []
for i in range(N):
obj_to_i = (obj_to_img==i).nonzero().view(-1)
loss = self._coverage_loss(boxes[obj_to_i],fragments[i])
losses.append(loss)
return torch.mean(torch.stack(losses))
class MutexLoss(nn.Module):
def __init__(self,nsample=100,cuda=True):
super(MutexLoss,self).__init__()
self.bstep = round(nsample/4)
self.fstep = round(math.sqrt(nsample))
self.BP = self.bstep*4
self.FP = self.fstep*self.fstep
self.boundary = sample_boundary(step=self.bstep).view(1,self.BP,2)
self.fragment = sample_fragment(step=self.fstep).view(1,self.FP,2)
if cuda:
self.boundary=self.boundary.cuda()
self.fragment=self.fragment.cuda()
def _mutex_loss(self,boxes):
B = boxes.shape[0]
box_wh=boxes[:,2:]-boxes[:,:2]
# [B,FP,2]
fragments = self.fragment*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [B,BP,2]
box_points = self.boundary*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [B,FP,B]
f_in_box = 1-fragment_outside_box(fragments,boxes)
# clear dist to self
f_in_box[range(B),:,range(B)]=0
# [B,FP,B] B个Box的PP个点与B个Box的最小距离
f_b_dist = fragment_box_distance(fragments,box_points)
return (f_b_dist*f_in_box).sum()/(B*self.FP-B)
def test(self,boxes):
with torch.no_grad():
return self._mutex_loss(boxes)
def forward(self,boxes,obj_to_img,objs=None,reduction="mean"):
N = obj_to_img.data.max().item() + 1
boxes = box_utils.centers_to_extents(boxes)
losses = []
for i in range(N):
obj_to_i = ((obj_to_img==i)*(objs!=0)).nonzero().view(-1)
loss = self._mutex_loss(boxes[obj_to_i])
losses.append(loss)
return torch.mean(torch.stack(losses))
class BoxRenderLoss(nn.Module):
def __init__(self,nsample=100,cuda=True):
super(BoxRenderLoss,self).__init__()
self.bstep = round(nsample/4)
self.fstep = round(math.sqrt(nsample))
self.BP = self.bstep*4
self.FP = self.fstep*self.fstep
self.boundary = sample_boundary(step=self.bstep).view(1,self.BP,2)
self.fragment = sample_fragment(step=self.fstep).view(1,self.FP,2)
if cuda:
self.boundary=self.boundary.cuda()
self.fragment=self.fragment.cuda()
def _fragment_outside_box(self,fragments,boxes):
assert fragments.dim()==3
F,FP,_ = fragments.shape
diff = torch.cat([
fragments.view(F,FP,2)-boxes[:,:2].view(F,1,2),
boxes[:,2:].view(F,1,2)-fragments.view(F,FP,2)
],dim=-1)
return ((diff>=0).sum(-1)!=4).float()
def _fragment_box_distance(self,fragments,box_points):
F,FP,_ = fragments.shape
B,BP,_ = box_points.shape
return (fragments.view(F,FP,1,2)-box_points.view(B,1,BP,2)).pow(2).sum(-1).min(-1)[0]
def _render_loss(self,boxes,targets):
B = boxes.shape[0]
box_wh=boxes[:,2:]-boxes[:,:2]
target_wh=targets[:,2:]-targets[:,:2]
# [B,FP,2]
box_fragments = self.fragment*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [B,BP,2]
box_points = self.boundary*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [B,FP,2]
target_fragments = self.fragment*target_wh.view(B,1,2)+targets[:,:2].view(B,1,2)
# [B,BP,2]
target_points = self.boundary*target_wh.view(B,1,2)+targets[:,:2].view(B,1,2)
# [B,FP]
b_out_t = self._fragment_outside_box(box_fragments,targets)
t_out_b = self._fragment_outside_box(target_fragments,boxes)
# [B,FP] B个Box的PP个点与B个Box的最小距离
b_t_dist = self._fragment_box_distance(box_fragments,target_points)
t_b_dist = self._fragment_box_distance(target_fragments,box_points)
return ((b_t_dist*b_out_t).sum()+(t_b_dist*t_out_b).sum())/(2*B*self.FP)
def test(self,boxes,targets):
with torch.no_grad():
return _render_loss(self,boxes,targets)
def forward(self,boxes,targets,reduction="mean"):
return torch.mean(self._render_loss(boxes,targets))
class DoorLoss(nn.Module):
def __init__(self,nsample=100,cuda=True):
super(DoorLoss,self).__init__()
self.bstep = round(nsample/4)
self.fstep = round(math.sqrt(nsample))
self.BP = self.bstep*4
self.FP = self.fstep*self.fstep
self.boundary = sample_boundary(step=self.bstep).view(1,self.BP,2)
self.fragment = sample_fragment(step=self.fstep).view(1,self.FP,2)
if cuda:
self.boundary=self.boundary.cuda()
self.fragment=self.fragment.cuda()
def _door_loss(self,boxes,doors,objs):
B, _ = boxes.shape
F, _ = doors.shape
box_wh=boxes[:,2:]-boxes[:,:2]
door_wh = doors[:,2:]-doors[:,:2]
# [B,BP,2]
box_boundaries = self.boundary*box_wh.view(B,1,2)+boxes[:,:2].view(B,1,2)
# [F,FP,2]
door_fragments = self.fragment*door_wh.view(F,1,2)+doors[:,:2].view(F,1,2)
# [F,FP,B]
f_out_box = (objs-fragment_outside_box(door_fragments,boxes)).abs()
# [F,FP,B]
f_b_dist = fragment_box_distance(door_fragments,box_boundaries)
# [F,FP]
return (f_b_dist*f_out_box).sum()/(F*self.FP)
def forward(self,boxes,doors,obj_to_img,objs=None,reduction="mean"):
N = obj_to_img.data.max().item() + 1
boxes = box_utils.centers_to_extents(boxes)
losses = []
for i in range(N):
obj_to_i = ((obj_to_img==i)).nonzero().view(-1)
objs_i = (objs[obj_to_img==i]!=0).long()
loss = self._door_loss(boxes[obj_to_i],doors[[i]],objs_i)
losses.append(loss)
return torch.mean(torch.stack(losses))
if __name__ == "__main__":
# [4]
fragment_box = torch.tensor(
[0.25,0.25,0.75,0.75]
).view(1,4)
# [B,4]
boxes = torch.tensor([
[0.25,0.00,0.50,0.50],
[0.50,0.50,1.00,0.75]
],requires_grad=True)
# (0.25**2*2+(0.25*sqrt(2))**2*2)/(8*2)=0.046875
loss = inside_loss(boxes,fragment_box,step=2)
print(loss)
insideL = InsideLoss(cuda=False)
print(insideL(boxes,fragment_box,torch.tensor([0,0])))
boxes = torch.tensor([
[0.25,0.00,0.50,0.50],
[0.50,0.50,1.00,0.75]
],requires_grad=True)
#
X = torch.linspace(0.,1.,4)
Y = torch.linspace(0.,1.,4)
# P,2
fragment_points = torch.tensor([ (X[x],Y[y]) for x in range(1,3) for y in range(1,3)]).view(1,4,2)
# (0.09**2+0.16**2+0.16**2*2)/4=0.021225
loss = coverage_loss(boxes,fragment_points)
print(loss)
coverageL = CoverageLoss(cuda=False)
print(coverageL(boxes,fragment_points,torch.tensor([0,0])))
# B,4
boxes = torch.tensor([
[0.25,0.00,0.49,0.49], #0
[0.00,0.25,0.49,0.49], #1
[0.51,0.51,1.00,0.75], #2
[0.51,0.51,0.75,1.00] #3
],requires_grad=True)
# (( ( (0.24**2+0.25**2) + (0.51**2+0.26**2)*2 )
# +(0.25**2+ (0.51**2+0.02**2)*2 )
# +((0.26**2+0.02**2)*2)
# +((0.02**2*2)*2))*4)
# /(4*4-4) = 0.4988666
loss = mutex_loss(boxes,step=2)
print(loss)
mutexL = MutexLoss(cuda=False)
print(mutexL(boxes,torch.tensor([0,0,1,1]))) |